Main Content

softmaxLayer

Softmax 层

说明

softmax 层对输入应用 softmax 函数。

创建对象

描述

使用 layer = softmaxLayer 创建一个 softmax 层。

layer = softmaxLayer(Name=name) 创建一个 softmax 层,并使用名称-值对组设置可选的 Name 属性。例如,softmaxLayer(Name="sm1") 创建一个名为 "sm1" 的 softmax 层。

示例

属性

全部展开

层名称,指定为字符向量或字符串标量。对于 Layer 数组输入,trainnetdlnetwork 函数会自动为层指定名称 ""

SoftmaxLayer 对象将此属性存储为字符向量。

数据类型: char | string

此 属性 为只读。

层的输入数,返回为 1。此层只接受一个输入。

数据类型: double

此 属性 为只读。

输入名称,返回为 {'in'}。此层只接受一个输入。

数据类型: cell

此 属性 为只读。

层的输出数,返回为 1。此层只有一个输出。

数据类型: double

此 属性 为只读。

输出名称,返回为 {'out'}。此层只有一个输出。

数据类型: cell

示例

全部折叠

创建一个名为 "sm1" 的 softmax 层。

layer = softmaxLayer(Name="sm1")
layer = 
  SoftmaxLayer with properties:

    Name: 'sm1'

Layer 数组中包含一个 softmax 层。

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    fullyConnectedLayer(10)
    softmaxLayer]
layers = 
  6x1 Layer array with layers:

     1   ''   Image Input       28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution   20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU              ReLU
     4   ''   2-D Max Pooling   2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected   10 fully connected layer
     6   ''   Softmax           softmax

算法

全部展开

参考

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

扩展功能

C/C++ 代码生成
使用 MATLAB® Coder™ 生成 C 代码和 C++ 代码。

GPU 代码生成
使用 GPU Coder™ 为 NVIDIA® GPU 生成 CUDA® 代码。

版本历史记录

在 R2016a 中推出