# margin

Classification margins for multiclass error-correcting output codes (ECOC) model

## Syntax

## Description

returns the classification margins
(`m`

= margin(`Mdl`

,`tbl`

,`ResponseVarName`

)`m`

) for the trained multiclass error-correcting output codes (ECOC)
model `Mdl`

using the predictor data in table `tbl`

and the class labels in `tbl.ResponseVarName`

.

specifies options using one or more name-value pair arguments in addition to any of the
input argument combinations in previous syntaxes. For example, you can specify a decoding
scheme, binary learner loss function, and verbosity level.`m`

= margin(___,`Name,Value`

)

## Examples

### Test-Sample Classification Margins of ECOC Model

Calculate the test-sample classification margins of an ECOC model with SVM binary learners.

Load Fisher's iris data set. Specify the predictor data `X`

, the response data `Y`

, and the order of the classes in `Y`

.

load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1) % For reproducibility

Train an ECOC model using SVM binary classifiers. Specify a 30% holdout sample, standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',true); PMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder); Mdl = PMdl.Trained{1}; % Extract trained, compact classifier

`PMdl`

is a `ClassificationPartitionedECOC`

model. It has the property `Trained`

, a 1-by-1 cell array containing the `CompactClassificationECOC`

model that the software trained using the training set.

Calculate the test-sample classification margins. Display the distribution of the margins using a boxplot.

testInds = test(PMdl.Partition); % Extract the test indices XTest = X(testInds,:); YTest = Y(testInds,:); m = margin(Mdl,XTest,YTest); boxplot(m) title('Test-Sample Margins')

The classification margin of an observation is the positive-class negated loss minus the maximum negative-class negated loss. Choose classifiers that yield relatively large margins.

### Select ECOC Model Features by Examining Test-Sample Margins

Perform feature selection by comparing test-sample margins from multiple models. Based solely on this comparison, the model with the greatest margins is the best model.

Load Fisher's iris data set. Specify the predictor data `X`

, the response data `Y`

, and the order of the classes in `Y`

.

load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 30% holdout sample for testing.

Partition = cvpartition(Y,'Holdout',0.30); testInds = test(Partition); % Indices for the test set XTest = X(testInds,:); YTest = Y(testInds,:);

`Partition`

defines the data set partition.

Define these two data sets:

`fullX`

contains all four predictors.`partX`

contains the sepal measurements only.

fullX = X; partX = X(:,1:2);

Train an ECOC model using SVM binary classifiers for each predictor set. Specify the partition definition, standardize the predictors using an SVM template, and define the class order.

t = templateSVM('Standardize',true); fullPMdl = fitcecoc(fullX,Y,'CVPartition',Partition,'Learners',t,... 'ClassNames',classOrder); partPMdl = fitcecoc(partX,Y,'CVPartition',Partition,'Learners',t,... 'ClassNames',classOrder); fullMdl = fullPMdl.Trained{1}; partMdl = partPMdl.Trained{1};

`fullPMdl`

and `partPMdl`

are `ClassificationPartitionedECOC`

models. Each model has the property `Trained`

, a 1-by-1 cell array containing the `CompactClassificationECOC`

model that the software trained using the corresponding training set.

Calculate the test-sample margins for each classifier. For each model, display the distribution of the margins using a boxplot.

fullMargins = margin(fullMdl,XTest,YTest); partMargins = margin(partMdl,XTest(:,1:2),YTest); boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'}) title('Boxplots of Test-Sample Margins')

The margin distribution of `fullMdl`

is situated higher and has less variability than the margin distribution of `partMdl`

.

## Input Arguments

`Mdl`

— Full or compact multiclass ECOC model

`ClassificationECOC`

model object | `CompactClassificationECOC`

model
object

Full or compact multiclass ECOC model, specified as a
`ClassificationECOC`

or
`CompactClassificationECOC`

model
object.

To create a full or compact ECOC model, see `ClassificationECOC`

or `CompactClassificationECOC`

.

`tbl`

— Sample data

table

Sample data, specified as a table. Each row of `tbl`

corresponds to one
observation, and each column corresponds to one predictor variable. Optionally,
`tbl`

can contain additional columns for the response variable
and observation weights. `tbl`

must contain all the predictors used
to train `Mdl`

. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If you train `Mdl`

using sample data contained in a
`table`

, then the input data for `margin`

must also be in a table.

When training `Mdl`

, assume that you set
`'Standardize',true`

for a template object specified in the
`'Learners'`

name-value pair argument of `fitcecoc`

. In
this case, for the corresponding binary learner `j`

, the software standardizes
the columns of the new predictor data using the corresponding means in
`Mdl.BinaryLearner{j}.Mu`

and standard deviations in
`Mdl.BinaryLearner{j}.Sigma`

.

**Data Types: **`table`

`ResponseVarName`

— Response variable name

name of variable in `tbl`

Response variable name, specified as the name of a variable in `tbl`

. If
`tbl`

contains the response variable used to train
`Mdl`

, then you do not need to specify
`ResponseVarName`

.

If you specify `ResponseVarName`

, then you must do so as a character vector
or string scalar. For example, if the response variable is stored as
`tbl.y`

, then specify `ResponseVarName`

as
`'y'`

. Otherwise, the software treats all columns of
`tbl`

, including `tbl.y`

, as predictors.

The response variable must be a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

**Data Types: **`char`

| `string`

`X`

— Predictor data

numeric matrix

Predictor data, specified as a numeric matrix.

Each row of `X`

corresponds to one observation, and each column corresponds
to one variable. The variables in the columns of
`X`

must be the same as the
variables that trained the classifier
`Mdl`

.

The number of rows in `X`

must equal the number of rows in
`Y`

.

When training `Mdl`

, assume that you set
`'Standardize',true`

for a template object specified in the
`'Learners'`

name-value pair argument of `fitcecoc`

. In
this case, for the corresponding binary learner `j`

, the software standardizes
the columns of the new predictor data using the corresponding means in
`Mdl.BinaryLearner{j}.Mu`

and standard deviations in
`Mdl.BinaryLearner{j}.Sigma`

.

**Data Types: **`double`

| `single`

`Y`

— Class labels

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric
vector, or a cell array of character vectors. `Y`

must have the same
data type as `Mdl.ClassNames`

. (The software treats string arrays as cell arrays of character
vectors.)

The number of rows in `Y`

must equal the number of rows in
`tbl`

or `X`

.

**Data Types: **`categorical`

| `char`

| `string`

| `logical`

| `single`

| `double`

| `cell`

### Name-Value Arguments

Specify optional pairs of arguments as
`Name1=Value1,...,NameN=ValueN`

, where `Name`

is
the argument name and `Value`

is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.

*
Before R2021a, use commas to separate each name and value, and enclose*
`Name`

*in quotes.*

**Example: **`margin(Mdl,tbl,'y','BinaryLoss','exponential')`

specifies an
exponential binary learner loss function.

`BinaryLoss`

— Binary learner loss function

`'hamming'`

| `'linear'`

| `'logit'`

| `'exponential'`

| `'binodeviance'`

| `'hinge'`

| `'quadratic'`

| function handle

Binary learner loss function, specified as the comma-separated pair consisting of
`'BinaryLoss'`

and a built-in loss function name or function handle.

This table describes the built-in functions, where

*y*is the class label for a particular binary learner (in the set {–1,1,0}),_{j}*s*is the score for observation_{j}*j*, and*g*(*y*,_{j}*s*) is the binary loss formula._{j}Value Description Score Domain *g*(*y*,_{j}*s*)_{j}`"binodeviance"`

Binomial deviance (–∞,∞) log[1 + exp(–2 *y*)]/[2log(2)]_{j}s_{j}`"exponential"`

Exponential (–∞,∞) exp(– *y*)/2_{j}s_{j}`"hamming"`

Hamming [0,1] or (–∞,∞) [1 – sign( *y*)]/2_{j}s_{j}`"hinge"`

Hinge (–∞,∞) max(0,1 – *y*)/2_{j}s_{j}`"linear"`

Linear (–∞,∞) (1 – *y*)/2_{j}s_{j}`"logit"`

Logistic (–∞,∞) log[1 + exp(– *y*)]/[2log(2)]_{j}s_{j}`"quadratic"`

Quadratic [0,1] [1 – *y*(2_{j}*s*– 1)]_{j}^{2}/2The software normalizes binary losses so that the loss is 0.5 when

*y*= 0. Also, the software calculates the mean binary loss for each class [1]._{j}For a custom binary loss function, for example

`customFunction`

, specify its function handle`'BinaryLoss',@customFunction`

.`customFunction`

has this form:bLoss = customFunction(M,s)

`M`

is the*K*-by-*B*coding matrix stored in`Mdl.CodingMatrix`

.`s`

is the 1-by-*B*row vector of classification scores.`bLoss`

is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.*K*is the number of classes.*B*is the number of binary learners.

For an example of passing a custom binary loss function, see Predict Test-Sample Labels of ECOC Model Using Custom Binary Loss Function.

This table identifies the default `BinaryLoss`

value, which depends on the
score ranges returned by the binary learners.

Assumption | Default Value |
---|---|

All binary learners are any of the following: Classification decision trees Discriminant analysis models *k*-nearest neighbor modelsLinear or kernel classification models of logistic regression learners Naive Bayes models
| `'quadratic'` |

All binary learners are SVMs or linear or kernel classification models of SVM learners. | `'hinge'` |

All binary learners are ensembles trained by
`AdaboostM1` or
`GentleBoost` . | `'exponential'` |

All binary learners are ensembles trained by
`LogitBoost` . | `'binodeviance'` |

You specify to predict class posterior probabilities by setting
`'FitPosterior',true` in `fitcecoc` . | `'quadratic'` |

Binary learners are heterogeneous and use different loss functions. | `'hamming'` |

To check the default value, use dot notation to display the `BinaryLoss`

property of the trained model at the command line.

**Example: **`'BinaryLoss','binodeviance'`

**Data Types: **`char`

| `string`

| `function_handle`

`Decoding`

— Decoding scheme

`'lossweighted'`

(default) | `'lossbased'`

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair
consisting of `'Decoding'`

and `'lossweighted'`

or
`'lossbased'`

. For more information, see Binary Loss.

**Example: **`'Decoding','lossbased'`

`ObservationsIn`

— Predictor data observation dimension

`'rows'`

(default) | `'columns'`

Predictor data observation dimension, specified as the comma-separated pair consisting of
`'ObservationsIn'`

and `'columns'`

or
`'rows'`

. `Mdl.BinaryLearners`

must contain
`ClassificationLinear`

models.

**Note**

If you orient your predictor matrix so that
observations correspond to columns and specify
`'ObservationsIn','columns'`

, you
can experience a significant reduction in
execution time. You cannot specify
`'ObservationsIn','columns'`

for
predictor data in a table.

`Options`

— Estimation options

`[]`

(default) | structure array returned by `statset`

Estimation options, specified as the comma-separated pair consisting
of `'Options'`

and a structure array returned by `statset`

.

To invoke parallel computing:

You need a Parallel Computing Toolbox™ license.

Specify

`'Options',statset('UseParallel',true)`

.

`Verbose`

— Verbosity level

`0`

(default) | `1`

Verbosity level, specified as the comma-separated pair consisting of
`'Verbose'`

and `0`

or `1`

.
`Verbose`

controls the number of diagnostic messages that the
software displays in the Command Window.

If `Verbose`

is `0`

, then the software does not display
diagnostic messages. Otherwise, the software displays diagnostic messages.

**Example: **`'Verbose',1`

**Data Types: **`single`

| `double`

## Output Arguments

`m`

— Classification margins

numeric column vector | numeric matrix

Classification margins, returned as a numeric column vector or numeric matrix.

If `Mdl.BinaryLearners`

contains `ClassificationLinear`

models, then `m`

is an
*n*-by-*L* vector, where *n* is the
number of observations in `X`

and *L* is the number
of regularization strengths in the linear classification models
(`numel(Mdl.BinaryLearners{1}.Lambda)`

). The value
`m(i,j)`

is the margin of observation `i`

for the
model trained using regularization strength
`Mdl.BinaryLearners{1}.Lambda(j)`

.

Otherwise, `m`

is a column vector of length
*n*.

## More About

### Binary Loss

The *binary loss* is a function of the class and classification score that determines how well a binary learner classifies an observation into the class. The *decoding scheme* of an ECOC model specifies how the software aggregates the binary losses and determines the predicted class for each observation.

Assume the following:

*m*is element (_{kj}*k*,*j*) of the coding design matrix*M*—that is, the code corresponding to class*k*of binary learner*j*.*M*is a*K*-by-*B*matrix, where*K*is the number of classes, and*B*is the number of binary learners.*s*is the score of binary learner_{j}*j*for an observation.*g*is the binary loss function.$$\widehat{k}$$ is the predicted class for the observation.

The software supports two decoding schemes:

*Loss-based decoding*[2] (`Decoding`

is`'lossbased'`

) — The predicted class of an observation corresponds to the class that produces the minimum average of the binary losses over all binary learners.$$\widehat{k}=\underset{k}{\text{argmin}}\frac{1}{B}{\displaystyle \sum _{j=1}^{B}\left|{m}_{kj}\right|g}({m}_{kj},{s}_{j}).$$

*Loss-weighted decoding*[3] (`Decoding`

is`'lossweighted'`

) — The predicted class of an observation corresponds to the class that produces the minimum average of the binary losses over the binary learners for the corresponding class.$$\widehat{k}=\underset{k}{\text{argmin}}\frac{{\displaystyle \sum _{j=1}^{B}\left|{m}_{kj}\right|g}({m}_{kj},{s}_{j})}{{\displaystyle \sum}_{j=1}^{B}\left|{m}_{kj}\right|}.$$

The denominator corresponds to the number of binary learners for class

*k*. [1] suggests that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

The `predict`

, `resubPredict`

, and
`kfoldPredict`

functions return the negated value of the objective
function of `argmin`

as the second output argument
(`NegLoss`

) for each observation and class.

This table summarizes the supported binary loss functions, where
*y _{j}* is a class label for a particular
binary learner (in the set {–1,1,0}),

*s*is the score for observation

_{j}*j*, and

*g*(

*y*,

_{j}*s*) is the binary loss function.

_{j}Value | Description | Score Domain | g(y,_{j}s)_{j} |
---|---|---|---|

`"binodeviance"` | Binomial deviance | (–∞,∞) | log[1 +
exp(–2y)]/[2log(2)]_{j}s_{j} |

`"exponential"` | Exponential | (–∞,∞) | exp(–y)/2_{j}s_{j} |

`"hamming"` | Hamming | [0,1] or (–∞,∞) | [1 – sign(y)]/2_{j}s_{j} |

`"hinge"` | Hinge | (–∞,∞) | max(0,1 – y)/2_{j}s_{j} |

`"linear"` | Linear | (–∞,∞) | (1 – y)/2_{j}s_{j} |

`"logit"` | Logistic | (–∞,∞) | log[1 +
exp(–y)]/[2log(2)]_{j}s_{j} |

`"quadratic"` | Quadratic | [0,1] | [1 – y(2_{j}s –
1)]_{j}^{2}/2 |

The software normalizes binary losses so that the loss is 0.5 when
*y _{j}* = 0, and aggregates using the average
of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
`LossFun`

name-value argument of the `loss`

and
`predict`

object functions), which measures how well an ECOC classifier
performs as a whole.

### Classification Margin

The *classification margin* is, for each observation,
the difference between the negative loss for the true class and the maximal negative loss
among the false classes. If the margins are on the same scale, then they serve as a
classification confidence measure. Among multiple classifiers, those that yield greater
margins are better.

## Tips

To compare the margins or edges of several ECOC classifiers, use template objects to specify a common score transform function among the classifiers during training.

## References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for margin classiﬁers.” *Journal of Machine Learning Research*. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P.
Radeva. “Separability of ternary codes for sparse designs of error-correcting output codes.”
*Pattern Recog. Lett.* Vol. 30, Issue 3, 2009, pp.
285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output codes.” *IEEE Transactions on Pattern Analysis and Machine Intelligence*. Vol. 32, Issue 7, 2010, pp. 120–134.

## Extended Capabilities

### Tall Arrays

Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

`margin`

does not support tall`table`

data when`Mdl`

contains kernel or linear binary learners.

For more information, see Tall Arrays.

### Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the `Options`

name-value argument in the call to
this function and set the `UseParallel`

field of the
options structure to `true`

using
`statset`

:

`Options=statset(UseParallel=true)`

For more information about parallel computing, see Run MATLAB Functions with Automatic Parallel Support (Parallel Computing Toolbox).

### GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

The

`margin`

function does not support models trained using decision tree learners with surrogate splits.The

`margin`

function does not support models trained using SVM learners.

For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).

## Version History

**Introduced in R2014b**

## See Also

`ClassificationECOC`

| `CompactClassificationECOC`

| `edge`

| `resubMargin`

| `predict`

| `fitcecoc`

| `loss`

## MATLAB 命令

您点击的链接对应于以下 MATLAB 命令：

请在 MATLAB 命令行窗口中直接输入以执行命令。Web 浏览器不支持 MATLAB 命令。

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

## How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

### Americas

- América Latina (Español)
- Canada (English)
- United States (English)

### Europe

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)