分类集成
分类集成是由多个分类模型的加权组合构成的预测模型。一般来讲,将多个分类模型相结合可以提高预测性能。
要以交互方式研究分类集成,可以使用分类学习器。为了获得更大的灵活性,可以在命令行界面中使用 fitcensemble 来提升或装袋分类树,或者生成一个随机森林。有关支持的所有集成的详细信息,请参阅Ensemble Algorithms。要将多类问题简化为二分类问题的集成,可以训练纠错输出编码 (ECOC) 模型。有关详细信息,请参阅 fitcecoc。
要使用 LSBoost 提升回归树,或者要生成回归树的随机森林,请参阅回归集成。
App
| 分类学习器 | 使用有监督的机器学习训练模型以对数据进行分类 | 
模块
| ClassificationEnsemble Predict | Classify observations using ensemble of decision trees (自 R2021a 起) | 
| ClassificationECOC Predict | Classify observations using error-correcting output codes (ECOC) classification model (自 R2023a 起) | 
| IncrementalClassificationECOC Predict | Classify observations using incremental ECOC classification model (自 R2024a 起) | 
函数
对象
类
主题
- Framework for Ensemble LearningObtain highly accurate predictions by using many weak learners. 
- Ensemble AlgorithmsLearn about different algorithms for ensemble learning. 
- Train Classification EnsembleTrain a simple classification ensemble. 
- Test Ensemble QualityLearn methods to evaluate the predictive quality of an ensemble. 
- Handle Imbalanced Data or Unequal Misclassification Costs in Classification EnsemblesLearn how to set prior class probabilities and misclassification costs. 
- Classification with Imbalanced DataUse the RUSBoost algorithm for classification when one or more classes are over-represented in your data. 
- LPBoost and TotalBoost for Small EnsemblesCreate small ensembles by using the LPBoost and TotalBoost algorithms. 
- Tune RobustBoostTune RobustBoost parameters for better predictive accuracy. 
- Surrogate SplitsGain better predictions when you have missing data by using surrogate splits. 
- Train Classification Ensemble in ParallelTrain a bagged ensemble in parallel reproducibly. 
- Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBaggerCreate a TreeBaggerensemble for classification.
- Credit Rating by Bagging Decision TreesThis example shows how to build an automated credit rating tool. 
- Random Subspace ClassificationIncrease the accuracy of classification by using a random subspace ensemble. 
- Predict Class Labels Using ClassificationEnsemble Predict BlockTrain a classification ensemble model with optimal hyperparameters, and then use the ClassificationEnsemble Predict block for label prediction. 
- Predict Class Labels Using ClassificationECOC Predict BlockTrain an ECOC classification model, and then use the ClassificationECOC Predict block for label prediction. (自 R2023a 起)