Main Content

分类树

用于多类学习的二叉决策树

要以交互方式生成分类树,可以使用分类学习器。为了获得更大的灵活性,可以在命令行中使用 fitctree 生成分类树。生成分类树后,可以将树和新的预测变量数据传递给 predict,以预测标签。

App

分类学习器使用有监督的机器学习训练模型以对数据进行分类

模块

ClassificationTree PredictClassify observations using decision tree classifier (自 R2021a 起)

函数

全部展开

fitctreeFit binary decision tree for multiclass classification
compactReduce size of classification tree model
pruneProduce sequence of classification subtrees by pruning classification tree
cvlossClassification error by cross-validation for classification tree model
limeLocal interpretable model-agnostic explanations (LIME) (自 R2020b 起)
nodeVariableRangeRetrieve variable range of decision tree node (自 R2020a 起)
partialDependenceCompute partial dependence (自 R2020b 起)
permutationImportancePredictor importance by permutation (自 R2024a 起)
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
predictorImportanceEstimates of predictor importance for classification tree
shapleyShapley values (自 R2021a 起)
surrogateAssociationMean predictive measure of association for surrogate splits in classification tree
viewView classification tree
crossvalCross-validate machine learning model
kfoldEdgeClassification edge for cross-validated classification model
kfoldLossClassification loss for cross-validated classification model
kfoldMarginClassification margins for cross-validated classification model
kfoldPredictClassify observations in cross-validated classification model
kfoldfunCross-validate function for classification
lossClassification loss for classification tree model
resubLossResubstitution classification loss for classification tree model
compareHoldoutCompare accuracies of two classification models using new data
edgeClassification edge for classification tree model
marginClassification margins for classification tree model
resubEdgeResubstitution classification edge for classification tree model
resubMarginResubstitution classification margins for classification tree model
testckfoldCompare accuracies of two classification models by repeated cross-validation
predictPredict labels using classification tree model
resubPredictClassify observations in classification tree by resubstitution
gatherGather properties of Statistics and Machine Learning Toolbox object from GPU (自 R2020b 起)

对象

ClassificationTreeBinary decision tree for multiclass classification
CompactClassificationTreeCompact classification tree
ClassificationPartitionedModelCross-validated classification model

主题