二类分类中的公平性
研究二类分类中的公平性
为了检测和减轻二类分类中的社会性偏向,您可以使用 Statistics and Machine Learning Toolbox™ 中的 fairnessMetrics
、fairnessWeights
和 disparateImpactRemover
函数。首先,使用 fairnessMetrics
根据偏向和组指标评估数据集或分类模型的公平性。然后,使用 fairnessWeights
对观测值重新加权,或使用 disparateImpactRemover
消除敏感属性所带来的差别影响。
fairnessWeights
和 disparateImpactRemover
函数提供预处理方法,可用于在训练(或重新训练)分类器之前调整预测变量数据。要评估训练后的模型行为,您可以使用 fairnessMetrics
函数以及各种可解释性函数。有关详细信息,请参阅Interpret Machine Learning Models。
函数
fairnessMetrics | Bias and group metrics for a data set or classification model |
report | Generate fairness metrics report |
plot | Plot bar graph of fairness metric |
fairnessWeights | Reweight observations for fairness in binary classification |
disparateImpactRemover | Remove disparate impact of sensitive attribute |
transform | Transform new predictor data to remove disparate impact |
主题
- Introduction to Fairness in Binary Classification
Detect and mitigate societal bias in machine learning by using the
fairnessMetrics
,fairnessWeights
, anddisparateImpactRemover
functions.
相关信息
- Explore Fairness Metrics for Credit Scoring Model (Risk Management Toolbox)
- Bias Mitigation in Credit Scoring by Reweighting (Risk Management Toolbox)
- Bias Mitigation in Credit Scoring by Disparate Impact Removal (Risk Management Toolbox)