回归树集成
回归树集成是由多个回归树的加权组合构成的预测模型。通常,组合多个回归树可以提高预测性能。要使用 LSBoost 提升回归树,可以使用 fitrensemble
。要使用装袋法组合回归树或要生成随机森林 ,可以使用 fitrensemble
或 TreeBagger
。要使用装袋回归树实现分位数回归,可以使用 TreeBagger
。
对于分类集成,例如提升分类树或装袋分类树、随机子空间集成或用于多分类的纠错输出编码 (ECOC) 模型,请参阅分类集成。
App
回归学习器 | 使用有监督机器学习训练回归模型来预测数据 |
模块
RegressionEnsemble Predict | Predict responses using ensemble of decision trees for regression (自 R2021a 起) |
函数
对象
主题
- Ensemble Algorithms
Learn about different algorithms for ensemble learning.
- Framework for Ensemble Learning
Obtain highly accurate predictions by using many weak learners.
- Train Regression Ensemble
Train a simple regression ensemble.
- Test Ensemble Quality
Learn methods to evaluate the predictive quality of an ensemble.
- Select Predictors for Random Forests
Select split-predictors for random forests using interaction test algorithm.
- Ensemble Regularization
Automatically choose fewer weak learners for an ensemble in a way that does not diminish predictive performance.
- Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger
Create a
TreeBagger
ensemble for regression. - Use Parallel Processing for Regression TreeBagger Workflow
Speed up computation by running
TreeBagger
in parallel. - Detect Outliers Using Quantile Regression
Detect outliers in data using quantile random forest.
- Conditional Quantile Estimation Using Kernel Smoothing
Estimate conditional quantiles of a response given predictor data using quantile random forest and by estimating the conditional distribution function of the response using kernel smoothing.
- Tune Random Forest Using Quantile Error and Bayesian Optimization
Tune quantile random forest using Bayesian optimization.
- Predict Responses Using RegressionEnsemble Predict Block
Train a regression ensemble model with optimal hyperparameters, and then use the RegressionEnsemble Predict block for response prediction.
- Manually Perform Time Series Forecasting Using Ensembles of Boosted Regression Trees
Manually perform single-step and multiple-step time series forecasting with ensembles of boosted regression trees.