Main Content

本页翻译不是最新的。点击此处可查看最新英文版本。

高斯过程回归

高斯过程回归模型 (kriging)

高斯过程回归 (GPR) 模型是基于核的非参数化概率模型。要以交互方式训练 GPR 模型,请使用回归学习器。要获得更大的灵活性,请在命令行中使用 fitrgp 函数来训练 GPR 模型。训练后,您可以通过将模型和新预测变量数据传递给 predict 对象函数来预测新数据的响应。

App

回归学习器使用有监督机器学习训练回归模型来预测数据

模块

RegressionGP PredictPredict responses using Gaussian process (GP) regression model (自 R2022a 起)

函数

全部展开

fitrgpFit a Gaussian process regression (GPR) model
compactReduce size of machine learning model
templateGPGaussian process template (自 R2023b 起)
limeLocal interpretable model-agnostic explanations (LIME) (自 R2020b 起)
partialDependenceCompute partial dependence (自 R2020b 起)
permutationImportancePredictor importance by permutation (自 R2024a 起)
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
shapleyShapley values (自 R2021a 起)
crossvalCross-validate machine learning model
kfoldLossLoss for cross-validated partitioned regression model
kfoldPredictPredict responses for observations in cross-validated regression model
kfoldfunCross-validate function for regression
lossRegression error for Gaussian process regression model
resubLossResubstitution regression loss
postFitStatisticsCompute post-fit statistics for the exact Gaussian process regression model
predictPredict response of Gaussian process regression model
resubPredictPredict responses for training data using trained regression model

对象

RegressionGPGaussian process regression model
CompactRegressionGPCompact Gaussian process regression model class
RegressionPartitionedGPCross-validated Gaussian process regression (GPR) model (自 R2022b 起)

主题

精选示例