回归树
要以交互方式生成回归树,可以使用回归学习器。为了获得更大的灵活性,可以在命令行中使用 fitrtree
生成回归树。生成回归树后,可将树和新的预测变量数据传递给 predict
,以预测响应。
App
回归学习器 | 使用有监督机器学习训练回归模型来预测数据 |
模块
RegressionTree Predict | 使用回归树模型预测响应 (自 R2021a 起) |
函数
对象
RegressionTree | Regression tree |
CompactRegressionTree | Compact regression tree |
RegressionPartitionedModel | Cross-validated regression model |
主题
- Train Regression Trees Using Regression Learner App
Create and compare regression trees, and export trained models to make predictions for new data.
- Supervised Learning Workflow and Algorithms
Understand the steps for supervised learning and the characteristics of nonparametric classification and regression functions.
- Decision Trees
Understand decision trees and how to fit them to data.
- Growing Decision Trees
To grow decision trees,
fitctree
andfitrtree
apply the standard CART algorithm by default to the training data. - 查看决策树
创建并查看已训练的决策树的文本或图描述。
- Improving Classification Trees and Regression Trees
Tune trees by setting name-value pair arguments in
fitctree
andfitrtree
. - Prediction Using Classification and Regression Trees
Predict class labels or responses using trained classification and regression trees.
- Predict Out-of-Sample Responses of Subtrees
Predict responses for new data using a trained regression tree, and then plot the results.
- Predict Responses Using RegressionTree Predict Block
This example shows how to use the RegressionTree Predict block for response prediction in Simulink®.