Main Content

本页翻译不是最新的。点击此处可查看最新英文版本。

回归树

用于回归的二叉决策树

要以交互方式生成回归树,可以使用回归学习器。为了获得更大的灵活性,可以在命令行中使用 fitrtree 生成回归树。生成回归树后,可将树和新的预测变量数据传递给 predict,以预测响应。

App

回归学习器使用有监督机器学习训练回归模型来预测数据

模块

RegressionTree Predict使用回归树模型预测响应 (自 R2021a 起)

函数

全部展开

fitrtreeFit binary decision tree for regression
compactReduce size of regression tree model
pruneProduce sequence of regression subtrees by pruning regression tree
limeLocal interpretable model-agnostic explanations (LIME) (自 R2020b 起)
nodeVariableRangeRetrieve variable range of decision tree node (自 R2020a 起)
partialDependenceCompute partial dependence (自 R2020b 起)
permutationImportancePredictor importance by permutation (自 R2024a 起)
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
predictorImportanceEstimates of predictor importance for regression tree
surrogateAssociationMean predictive measure of association for surrogate splits in regression tree
shapleyShapley values (自 R2021a 起)
viewView regression tree
crossvalCross-validate machine learning model
cvlossRegression error by cross-validation for regression tree model
kfoldfunCross-validate function for regression
kfoldPredictPredict responses for observations in cross-validated regression model
kfoldLossLoss for cross-validated partitioned regression model
lossRegression error for regression tree model
resubLossResubstitution loss for regression tree model
predictPredict responses using regression tree model
resubPredictPredict response of regression tree by resubstitution
gatherGather properties of Statistics and Machine Learning Toolbox object from GPU (自 R2020b 起)

对象

RegressionTreeRegression tree
CompactRegressionTreeCompact regression tree
RegressionPartitionedModelCross-validated regression model

主题