分类集成
分类集成是由多个分类模型的加权组合构成的预测模型。一般来讲,将多个分类模型相结合可以提高预测性能。
要以交互方式研究分类集成,可以使用分类学习器。为了获得更大的灵活性,可以在命令行界面中使用 fitcensemble
来提升或装袋分类树,或者生成随机森林 [12]。有关支持的所有集成的详细信息,请参阅Ensemble Algorithms。要将多类问题简化为二分类问题的集成,可以训练纠错输出编码 (ECOC) 模型。有关详细信息,请参阅 fitcecoc
。
App
分类学习器 | 使用有监督的机器学习训练模型以对数据进行分类 |
模块
ClassificationEnsemble Predict | Classify observations using ensemble of decision trees (自 R2021a 起) |
ClassificationECOC Predict | Classify observations using error-correcting output codes (ECOC) classification model (自 R2023a 起) |
IncrementalClassificationECOC Predict | Classify observations using incremental ECOC classification model (自 R2024a 起) |
函数
对象
类
主题
- Train Ensemble Classifiers Using Classification Learner App
Create and compare ensemble classifiers, and export trained models to make predictions for new data.
- Framework for Ensemble Learning
Obtain highly accurate predictions by using many weak learners.
- Ensemble Algorithms
Learn about different algorithms for ensemble learning.
- Train Classification Ensemble
Train a simple classification ensemble.
- Test Ensemble Quality
Learn methods to evaluate the predictive quality of an ensemble.
- Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles
Learn how to set prior class probabilities and misclassification costs.
- Classification with Imbalanced Data
Use the RUSBoost algorithm for classification when one or more classes are over-represented in your data.
- LPBoost and TotalBoost for Small Ensembles
Create small ensembles by using the LPBoost and TotalBoost algorithms.
- Tune RobustBoost
Tune RobustBoost parameters for better predictive accuracy.
- Surrogate Splits
Gain better predictions when you have missing data by using surrogate splits.
- Train Classification Ensemble in Parallel
Train a bagged ensemble in parallel reproducibly.
- Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger
Create a
TreeBagger
ensemble for classification. - Credit Rating by Bagging Decision Trees
This example shows how to build an automated credit rating tool.
- Random Subspace Classification
Increase the accuracy of classification by using a random subspace ensemble.
- Predict Class Labels Using ClassificationEnsemble Predict Block
Train a classification ensemble model with optimal hyperparameters, and then use the ClassificationEnsemble Predict block for label prediction.
- Predict Class Labels Using ClassificationECOC Predict Block
Train an ECOC classification model, and then use the ClassificationECOC Predict block for label prediction. (自 R2023a 起)