主要内容

inceptionresnetv2

(不推荐)预训练 Inception-ResNet-v2 卷积神经网络

  • Inception-ResNet-v2 network architecture

不推荐使用 inceptionresnetv2。请改用 imagePretrainedNetwork 函数并指定 "inceptionresnetv2" 模型。有关详细信息,请参阅版本历史记录

说明

Inception-ResNet-v2 是一个卷积神经网络,基于来自 ImageNet 数据库 [1] 的超过一百万个图像进行训练。该网络有 164 层深,可以将图像分类至 1000 个目标类别(例如键盘、鼠标、铅笔和多种动物)。因此,该网络已基于大量图像学习了丰富的特征表示。该网络的图像输入大小为 299×299。有关 MATLAB® 中预训练网络的详细信息,请参阅预训练的深度神经网络

net = inceptionresnetv2 返回预训练的 Inception-ResNet-v2 网络。

此函数需要 Deep Learning Toolbox™ Model for Inception-ResNet-v2 Network 支持包。如果未安装此支持包,则函数会提供下载链接。

示例

示例

全部折叠

下载并安装Deep Learning Toolbox Model for Inception-ResNet-v2 Network 支持包。

在命令行中键入 inceptionresnetv2

inceptionresnetv2

如果未安装 Deep Learning Toolbox Model for Inception-ResNet-v2 Network 支持包,该函数将在附加功能资源管理器中提供所需支持包的链接。要安装支持包,请点击链接,然后点击安装。通过在命令行中键入 inceptionresnetv2 来检查安装是否成功。如果安装了所需的支持包,则该函数返回 DAGNetwork 对象。

net = inceptionresnetv2
net = 

  DAGNetwork with properties:

         Layers: [824×1 nnet.cnn.layer.Layer]
    Connections: [921×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_predictions'}

使用深度网络设计器可视化网络。

deepNetworkDesigner(inceptionresnetv2)

通过点击新建,在深度网络设计器中浏览其他预训练神经网络。

Deep Network Designer start page showing available pretrained neural networks

如果需要下载一个神经网络,请在所需的神经网络上暂停,然后点击安装以打开附加功能资源管理器。

输出参量

全部折叠

预训练的 Inception-ResNet-v2 卷积神经网络,以 DAGNetwork 对象形式返回。

参考

[1] ImageNet. http://www.image-net.org.

[2] Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.” Proceedings of the AAAI Conference on Artificial Intelligence 31, no. 1 (February 12, 2017). https://doi.org/10.1609/aaai.v31i1.11231.

扩展功能

全部展开

版本历史记录

在 R2017b 中推出

全部折叠