Main Content

本页翻译不是最新的。点击此处可查看最新英文版本。

可视化和验证

可视化神经网络行为、解释预测并使用序列和表格数据验证稳健性

在训练期间和训练后,可视化深度网络。使用内置的网络准确度和损失图监控训练进度。为了研究经过训练的网络,您可以使用可视化方法,如 Grad-CAM。

使用深度学习验证方法来评估深度神经网络的属性。例如,您可以验证网络的稳健性属性,计算网络输出边界,并找到对抗示例。

App

深度网络设计器设计和可视化深度学习网络

函数

全部展开

analyzeNetworkAnalyze deep learning network architecture
trainingProgressMonitorMonitor and plot training progress for deep learning custom training loops (自 R2022b 起)
updateInfoUpdate information values for custom training loops (自 R2022b 起)
recordMetricsRecord metric values for custom training loops (自 R2022b 起)
groupSubPlotGroup metrics in training plot (自 R2022b 起)
plot绘制神经网络架构
predictCompute deep learning network output for inference
minibatchpredictMini-batched neural network prediction (自 R2024a 起)
scores2labelConvert prediction scores to labels (自 R2024a 起)
gradCAMExplain network predictions using Grad-CAM (自 R2021a 起)
confusionchartCreate confusion matrix chart for classification problem
sortClassesSort classes of confusion matrix chart
rocmetricsReceiver operating characteristic (ROC) curve and performance metrics for binary and multiclass classifiers (自 R2022b 起)
addMetricsCompute additional classification performance metrics (自 R2022b 起)
averageCompute performance metrics for average receiver operating characteristic (ROC) curve in multiclass problem (自 R2022b 起)

属性

ConfusionMatrixChart PropertiesConfusion matrix chart appearance and behavior
ROCCurve PropertiesReceiver operating characteristic (ROC) curve appearance and behavior (自 R2022b 起)

主题

可解释性

训练进度和性能

精选示例