可视化和验证
可视化神经网络行为、解释预测并使用序列和表格数据验证稳健性
在训练期间和训练后,可视化深度网络。使用内置的网络准确度和损失图监控训练进度。为了研究经过训练的网络,您可以使用可视化方法,如 Grad-CAM。
使用深度学习验证方法来评估深度神经网络的属性。例如,您可以验证网络的稳健性属性,计算网络输出边界,并找到对抗示例。
App
深度网络设计器 | 设计和可视化深度学习网络 |
函数
属性
ConfusionMatrixChart Properties | Confusion matrix chart appearance and behavior |
ROCCurve Properties | Receiver operating characteristic (ROC) curve appearance and behavior (自 R2022b 起) |
主题
可解释性
- Visualize Activations of LSTM Network
This example shows how to investigate and visualize the features learned by LSTM networks by extracting the activations. - Interpret Deep Learning Time-Series Classifications Using Grad-CAM
This example shows how to use the gradient-weighted class activation mapping (Grad-CAM) technique to understand the classification decisions of a 1-D convolutional neural network trained on time-series data. - View Network Behavior Using tsne
This example shows how to use thetsne
function to view activations in a trained network. - 在 MATLAB 中进行深度学习
通过使用卷积神经网络进行分类和回归来探索 MATLAB® 的深度学习能力,包括预训练网络和迁移学习,以及在 GPU、CPU、集群和云上进行训练。 - Deep Learning Tips and Tricks
Learn how to improve the accuracy of deep learning networks.
训练进度和性能
- 监控深度学习训练进度
此示例说明如何监控深度学习网络的训练进度。 - Monitor Custom Training Loop Progress
Track and plot custom training loop progress. - ROC Curve and Performance Metrics
Userocmetrics
to examine the performance of a classification algorithm on a test data set.