Main Content




Image Processing Toolbox™ 和 Computer Vision Toolbox™ 一共提供四种图像配准解决方案:使用图像配准器的交互式配准、基于强度的自动图像配准、控制点配准和自动特征匹配。有关选择使用哪种方法的帮助,请参阅Approaches to Registering Images


图像配准器Register 2-D grayscale images



imregisterIntensity-based image registration
imregconfigConfigurations for intensity-based registration
imregtform Estimate geometric transformation that aligns two 2-D or 3-D images
imregcorrEstimate geometric transformation that aligns two 2-D images using phase correlation
imregdemonsEstimate displacement field that aligns two 2-D or 3-D images
imregmtbRegister 2-D images using median threshold bitmaps
normxcorr2Normalized 2-D cross-correlation
MattesMutualInformationMattes mutual information metric configuration
MeanSquaresMean square error metric configuration
RegularStepGradientDescentRegular step gradient descent optimizer configuration
OnePlusOneEvolutionaryOne-plus-one evolutionary optimizer configuration
cpselectControl Point Selection tool
cpcorrTune control point locations using cross-correlation
cpstruct2pairsExtract valid control point pairs from cpstruct structure



imref2dReference 2-D image to world coordinates
imref3dReference 3-D image to world coordinates
affine3d 3-D affine geometric transformation
projective2d 2-D projective geometric transformation



Register Images Using Registration Estimator App

This example shows how to align a pair of images using the Registration Estimator app.

Techniques Supported by Registration Estimator App

Registration Estimator app provides algorithms for feature-based, intensity-based, and nonrigid registration.


Intensity-Based Automatic Image Registration

Intensity-based automatic image registration uses a similarity metric, an optimizer, and a transformation type to register two images iteratively.

Create an Optimizer and Metric for Intensity-Based Image Registration

Select an image metric and an optimizer suitable for either monomodal or multimodal images.

Use Phase Correlation as Preprocessing Step in Registration

Phase correlation is useful to estimate an initial transformation when images are severely misaligned.

Registering an Image Using Normalized Cross-Correlation

This example shows how to determine the translation needed to align a cropped subset of an image with the larger image.


Control Point Registration

To determine the parameters of a transformation, you can pick corresponding points in a pair of images.

Geometric Transformation Types for Control Point Registration

Control point registration can infer the parameters for nonreflective similarity, affine, projective, polynomial, piecewise linear, and local weighted mean transformations.

Control Point Selection Procedure

To specify control points in a pair of images interactively, use the Control Point Selection Tool.

Use Cross-Correlation to Improve Control Point Placement

Fine-tune your control point selections using cross-correlation.