Main Content

sech

Hyperbolic secant

Description

Y = sech(X) returns the hyperbolic secant of the elements of X. The sech function operates element-wise on arrays. The function accepts both real and complex inputs. All angles are in radians.

example

Examples

collapse all

Create a vector and calculate the hyperbolic secant of each value.

X = [0 pi 2*pi 3*pi];
Y = sech(X)
Y = 1×4

    1.0000    0.0863    0.0037    0.0002

Plot the hyperbolic secant over the domain -2πx2π.

x = -2*pi:0.01:2*pi; 
y = sech(x);
plot(x,y)
grid on

Figure contains an axes object. The axes object contains an object of type line.

Input Arguments

collapse all

Input angles in radians, specified as a scalar, vector, matrix, multidimensional array, table, or timetable.

Data Types: single | double | table | timetable
Complex Number Support: Yes

More About

collapse all

Hyperbolic Secant

The hyperbolic secant of x is equal to the inverse of the hyperbolic cosine

sech(x)=1cosh(x)=2ex+ex.

In terms of the traditional secant function with a complex argument, the identity is

sech(x)=sec(ix).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Version History

Introduced before R2006a

expand all

See Also

| | |