Main Content

moveInterface

Move interface to another data dictionary

Since R2023b

Description

example

moveInterface(interface,dictionary) moves the interface interface to the data dictionary dictionary.

Examples

collapse all

Create a new model and get its architecture.

model = systemcomposer.createModel("archModel");
systemcomposer.openModel("archModel");
arch = model.Architecture;

Create a new data dictionary, Interfaces.sldd, and add a new data interface, GPSInterface.

dictionary = systemcomposer.createDictionary("Interfaces.sldd");
interface = dictionary.addInterface("GPSInterface");

Create a second data dictionary, InterfacesNew.sldd, and add a new data interface, SSDInterface. Attach the data dictionary to your model.

newDict = systemcomposer.createDictionary("InterfacesNew.sldd");
newInterface = newDict.addInterface("SSDInterface");
linkDictionary(model,"InterfacesNew.sldd");

Move the GPSInterface data interface to the second data dictionary InterfacesNew.sldd.

interface.moveInterface(newDict);

View the Interface Editor. Confirm that the GPSInterface data interface is now part of the InterfacesNew.sldd data dictionary.

newDict.Interfaces.Name

Input Arguments

collapse all

Data dictionary, specified as a systemcomposer.interface.Dictionary object. For information on how to create a data dictionary, see createDictionary.

More About

collapse all

Definitions

TermDefinitionApplicationMore Information
interface data dictionary

An interface data dictionary is a consolidated list of interfaces and value types in an architecture and where you use them in the architecture.

You can save local interfaces on a System Composer™ model in an interface data dictionary using the Interface Editor. You can reuse data dictionaries between models that need to use a given set of interfaces, elements, and value types. Data dictionaries that you attach to models are stored in separate SLDD files.

data interface

A data interface defines the kind of information that flows through a port. The same interface can be assigned to multiple ports. A data interface can be composite, meaning that it can include data elements that describe the properties of an interface signal.

Data interfaces represent the information that is shared through a connector and enters or exits a component through a port. Use the Interface Editor to create and manage data interfaces and data elements and store them in an interface data dictionary for reuse between models.

data element

A data element describes a portion of an interface, such as a communication message, a calculated or measured parameter, or other decomposition of that interface.

Data interfaces are decomposed into data elements:

  • Pins or wires in a connector or harness.

  • Messages transmitted across a bus.

  • Data structures shared between components.

value type

A value type can be used as a port interface to define the atomic piece of data that flows through that port and has a top-level type, dimension, unit, complexity, minimum, maximum, and description.

You can also assign the type of data elements in data interfaces to value types. Add value types to data dictionaries using the Interface Editor so that you can reuse the value types as interfaces or data elements.

Create Value Types as Interfaces
owned interface

An owned interface is an interface that is local to a specific port and not shared in a data dictionary or the model dictionary.

Create an owned interface to represent a value type or data interface that is local to a port.

Define Owned Interfaces Local to Ports
adapter

An adapter connects two components with incompatible port interfaces by mapping between the two interfaces. An adapter can act as a unit delay, rate transition, or merge. You can also use an adapter for bus creation. Use the Adapter block to implement an adapter.

With an adapter, you can perform functions on the Interface Adapter dialog box:

  • Create and edit mappings between input and output interfaces.

  • Apply an interface conversion UnitDelay to break an algebraic loop.

  • Apply an interface conversion RateTransition to reconcile different sample time rates for reference models.

  • Apply an interface conversion Merge to merge two or more message or signal lines.

  • When output interfaces are undefined, you can use input interfaces in bus creation mode to author owned output interfaces.

TermDefinitionApplicationMore Information
physical subsystem

A physical subsystem is a Simulink® subsystem with Simscape™ connections.

A physical subsystem with Simscape connections uses a physical network approach suited for simulating systems with real physical components and represents a mathematical model.

Implement Component Behavior Using Simscape
physical port

A physical port represents a Simscape physical modeling connector port called a Connection Port (Simscape).

Use physical ports to connect components in an architecture model or to enable physical systems in a Simulink subsystem.

Define Physical Ports on Component
physical connector

A physical connector can represent a nondirectional conserving connection of a specific physical domain. Connectors can also represent physical signals.

Use physical connectors to connect physical components that represent features of a system to simulate mathematically.

Architecture Model with Simscape Behavior for a DC Motor
physical interface

A physical interface defines the kind of information that flows through a physical port. The same interface can be assigned to multiple ports. A physical interface is a composite interface equivalent to a Simulink.ConnectionBus object that specifies a number of Simulink.ConnectionElement objects.

Use a physical interface to bundle physical elements to describe a physical model using at least one physical domain.

Specify Physical Interfaces on Ports
physical element

A physical element describes the decomposition of a physical interface. A physical element is equivalent to a Simulink.ConnectionElement object.

Define the Type of a physical element as a physical domain to enable use of that domain in a physical model.

Describe Component Behavior Using Simscape

TermDefinitionApplicationMore Information
software architecture

A software architecture is a specialization of an architecture for software-based systems, including the description of software compositions, component functions, and their scheduling.

Use software architectures in System Composer to author software architecture models composed of software components, ports, and interfaces. Design your software architecture model, define the execution order of your component functions, simulate your design in the architecture level, and generate code.

software component

A software component is a specialization of a component for software entities, including its interfaces.

Implement a Simulink export-function, rate-based, or JMAAB model as a software component, simulate the software architecture model, and generate code.

software composition

A software composition is a diagram of software components and connectors that represents a composite software entity, such as a module or application.

Encapsulate functionality by aggregating or nesting multiple software components or compositions.

Model Software Architecture of Throttle Position Control System
function

A function is an entry point where a transfer of program control occurs and can be defined in a software component.

You can apply stereotypes to functions in software architectures, edit sample times, and specify the function period using the Functions Editor.

Author and Extend Functions for Software Architectures
function element

A function element describes the attributes of a function in a client-server interface.

Edit the function prototype on a function element to change the number and names of inputs and outputs of the function. Edit function element properties as you would edit other interface element properties. Function argument types can include built-in types as well as bus objects. You can specify function elements to support:

  • Synchronous execution — When the client calls the server, the function runs immediately and returns the output arguments to the client.

  • Asynchronous execution — When the client makes a request to call the server, the function is executed asynchronously based on the priority order defined in the Functions Editor and Schedule Editor and returns the output arguments to the client.

systemcomposer.interface.FunctionElement
function argument

A function argument describes the attributes of an input or output argument in a function element.

You can set the properties of a function argument in the Interface Editor just as you would other value types: Type, Dimensions, Units, Complexity, Minimum, Maximum, and Description.

systemcomposer.interface.FunctionArgument
service interface

A service interface defines the functional interface between client and server components. Each service interface consists of one or more function elements.

Once you have defined a service interface in the Interface Editor, you can assign it to client and server ports using the Property Inspector. You can also use the Property Inspector to assign stereotypes to service interfaces.

server

A server is a component that defines and provides a function.

A server component is where the function is defined. You can implement function behavior in a Simulink export-function model.

Service Interfaces Overview
client

A client is a component that sends a request to the server.

A client component is where the function is called. The implementation of function call behavior is dependent on the synchronicity of the function execution.

Service Interfaces Overview
class diagram

A class diagram is a graphical representation of a static structural model that displays unique architecture types of the software components optionally with software methods and properties.

Class diagrams capture one instance of each referenced model and show relationships between them. A component diagram view can be optionally represented as a class diagram for a software architecture model.

Class Diagram View of Software Architectures

Version History

Introduced in R2023b

See Also

Functions

Objects

Blocks

Tools