hyperparameters
Variable descriptions for optimizing a fit function
Syntax
Description
returns the default variables for the given fit function. These are the variables
that apply when you set the VariableDescriptions
= hyperparameters(FitFcnName
,predictors
,response
)OptimizeHyperparameters
name-value
argument to "auto"
.
returns the variables for an ensemble fit with specified learner type. This syntax
applies when VariableDescriptions
= hyperparameters(FitFcnName
,predictors
,response
,LearnerType
)FitFcnName
is "fitcecoc"
,
"fitcensemble"
, or "fitrensemble"
.
Examples
Obtain Default Hyperparameters
Obtain the default hyperparameters for the fitcsvm
classifier.
Load the ionosphere
data.
load ionosphere
Obtain the hyperparameters.
VariableDescriptions = hyperparameters('fitcsvm',X,Y);
Examine all the hyperparameters.
for ii = 1:length(VariableDescriptions) disp(ii),disp(VariableDescriptions(ii)) end
1 optimizableVariable with properties: Name: 'BoxConstraint' Range: [1.0000e-03 1000] Type: 'real' Transform: 'log' Optimize: 1 2 optimizableVariable with properties: Name: 'KernelScale' Range: [1.0000e-03 1000] Type: 'real' Transform: 'log' Optimize: 1 3 optimizableVariable with properties: Name: 'KernelFunction' Range: {'gaussian' 'linear' 'polynomial'} Type: 'categorical' Transform: 'none' Optimize: 0 4 optimizableVariable with properties: Name: 'PolynomialOrder' Range: [2 4] Type: 'integer' Transform: 'none' Optimize: 0 5 optimizableVariable with properties: Name: 'Standardize' Range: {'true' 'false'} Type: 'categorical' Transform: 'none' Optimize: 1
Change the PolynomialOrder
hyperparameter to have a wider range and to be used in an optimization.
VariableDescriptions(4).Range = [2,5]; VariableDescriptions(4).Optimize = true; disp(VariableDescriptions(4))
optimizableVariable with properties: Name: 'PolynomialOrder' Range: [2 5] Type: 'integer' Transform: 'none' Optimize: 1
Obtain Ensemble Hyperparameters
Obtain the default hyperparameters for the fitrensemble
ensemble regression function.
Load the carsmall
data.
load carsmall
Use Horsepower
and Weight
as predictor variables, and MPG
as the response variable.
X = [Horsepower Weight]; Y = MPG;
Obtain the default hyperparameters for a Tree
learner.
VariableDescriptions = hyperparameters('fitrensemble',X,Y,'Tree');
Examine all the hyperparameters.
for ii = 1:length(VariableDescriptions) disp(ii),disp(VariableDescriptions(ii)) end
1 optimizableVariable with properties: Name: 'Method' Range: {'Bag' 'LSBoost'} Type: 'categorical' Transform: 'none' Optimize: 1 2 optimizableVariable with properties: Name: 'NumLearningCycles' Range: [10 500] Type: 'integer' Transform: 'log' Optimize: 1 3 optimizableVariable with properties: Name: 'LearnRate' Range: [1.0000e-03 1] Type: 'real' Transform: 'log' Optimize: 1 4 optimizableVariable with properties: Name: 'MinLeafSize' Range: [1 50] Type: 'integer' Transform: 'log' Optimize: 1 5 optimizableVariable with properties: Name: 'MaxNumSplits' Range: [1 99] Type: 'integer' Transform: 'log' Optimize: 0 6 optimizableVariable with properties: Name: 'NumVariablesToSample' Range: [1 2] Type: 'integer' Transform: 'none' Optimize: 0
Change the MaxNumSplits
hyperparameter to have a wider range and to be used in an optimization.
VariableDescriptions(5).Range = [1,200]; VariableDescriptions(5).Optimize = true; disp(VariableDescriptions(5))
optimizableVariable with properties: Name: 'MaxNumSplits' Range: [1 200] Type: 'integer' Transform: 'log' Optimize: 1
Input Arguments
FitFcnName
— Name of fitting function
"fitcdiscr"
| "fitcecoc"
| "fitcensemble"
| "fitcgam"
| "fitckernel"
| "fitcknn"
| "fitclinear"
| "fitcnb"
| "fitcnet"
| "fitcsvm"
| "fitctree"
| "fitrensemble"
| "fitrgam"
| "fitrgp"
| "fitrkernel"
| "fitrlinear"
| "fitrnet"
| "fitrsvm"
| "fitrtree"
Name of the fitting function, specified as one of the listed classification or regression fit function names.
Classification fit functions:
fitcdiscr
,fitcecoc
,fitcensemble
,fitcgam
,fitckernel
,fitcknn
,fitclinear
,fitcnb
,fitcnet
,fitcsvm
,fitctree
Regression fit functions:
fitrensemble
,fitrgam
,fitrgp
,fitrkernel
,fitrlinear
,fitrnet
,fitrsvm
,fitrtree
If FitFcnName
is "fitcecoc"
,
"fitcensemble"
, or "fitrensemble"
,
then you also need to specify the learner type in the
LearnerType
argument.
Example: "fitctree"
predictors
— Predictor data
matrix with D predictor columns | table with D predictor columns
Predictor data, specified as a matrix with D predictor columns or a table with D predictor columns, where D is the number of predictors.
Example: X
Data Types: double
| logical
| char
| string
| table
| cell
| categorical
| datetime
response
— Class labels or numeric response
grouping variable | scalar
Class labels or numeric response, specified as a grouping variable (see Grouping Variables) or a scalar.
Example: Y
Data Types: single
| double
| logical
| char
| string
| cell
LearnerType
— Learner type for ensemble fit
"discriminant"
| "ensemble"
| "kernel"
| "knn"
| "linear"
| "svm"
| "tree"
| template of a listed learner
Learner type for an ensemble fit, specified as "discriminant"
,
"ensemble"
, "kernel"
,
"knn"
, "linear"
,
"svm"
, "tree"
, or a template of
one of these learners. Use this argument when
FitFcnName
is "fitcecoc"
,
"fitcensemble"
, or
"fitrensemble"
.
For "fitcensemble"
, you can specify only "discriminant"
,
"knn"
, "tree"
, or an associated
template.
For "fitrensemble"
, you can specify only "tree"
or its
associated template.
Example: "tree"
Output Arguments
VariableDescriptions
— Variable descriptions
vector of optimizableVariable
objects
Variable descriptions, returned as a vector of optimizableVariable
objects. The
variables have their default parameters set, such as range and variable
type. All eligible variables exist in the descriptions, but the variables
unused in the "auto"
setting have their
Optimize
property set to false
.
You can update the variables by using dot notation, as shown in Examples.
Version History
Introduced in R2016bR2024a: Optimize hyperparameters of ensemble binary learners when using ECOC classification
fitcecoc
supports hyperparameter
optimization when you use ensemble binary learners. You can specify the OptimizeHyperparameters
name-value argument when the Learners
value is
"ensemble"
or an ensemble template created using the
templateEnsemble
function.
When you perform hyperparameter optimization using ensemble binary learners, the ensemble method must be
"AdaBoostM1"
,"GentleBoost"
, or"LogitBoost"
, and the ensemble weak learners must be trees.The
"ensemble"
value corresponds to an ensemble that uses an adaptive logistic regression aggregation method (LogitBoost
), 100 learning cycles, and tree weak learners.
fitcecoc
uses a default value of 70 for
MaxObjectiveEvaluations
when performing Bayesian optimization
with ensemble binary learners. For more information, see HyperparameterOptimizationOptions
.
You can use the hyperparameters
function to see the
eligible and default hyperparameters for the ensemble binary learners. Additionally,
you can use the function to adjust the hyperparameters and their ranges. Specify
"fitcecoc"
as the fitting function name and
"ensemble"
or an ensemble template as the learner
type.
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)