状态空间模型
状态空间中模型的表示不是唯一的。坐标变换会生成包含的矩阵不同但动态特性相同的状态空间模型。要获得状态空间模型的最小实现,或转换分析和控制设计的标准形式,可以使用状态坐标变换。
坐标变换对于缩放病态模型也很有用。状态空间模型的正确缩放对于精确计算至关重要。例如,如果一个动态系统的状态向量中有两个状态,其单位分别为光年和毫米,则模型的缩放效果就会很差。这种相差极大的单位可能会将非常大和非常小的条目引入 A 矩阵中。在计算过程中,矩阵中大小条目混合使用可能会破坏模型的重要特性,并导致不正确的结果。
函数
balreal | Balanced state-space realization |
prescale | Optimal scaling of state-space models |
modalreal | Compute modal state-space realization (自 R2023b 起) |
compreal | Compute companion state-space realization (自 R2023b 起) |
ss2ss | State coordinate transformation for state-space model |
ssequiv | Equivalence transformation for state-space models (自 R2023b 起) |
xperm | Reorder states in state-space models |
xsort | Sort states based on state partition (自 R2020b 起) |
xelim | Eliminate states from state-space models (自 R2023b 起) |
augstate | Append state vector to output vector |
ctrb | 状态空间模型的可控性 |
obsv | Observability of state-space model |
gram | Controllability and observability Gramians |
augoffset | Map offset contribution to extra input channel (自 R2024a 起) |
dss2ss | Convert descriptor state-space model to explicit form (自 R2024a 起) |
fixInput | Fix value of some inputs and delete them (自 R2024a 起) |
主题
- State-Space Realizations
A state-space model can be expressed in an infinite number of realizations. Common forms, sometimes called canonical forms, include modal, companion, observable, and controllable forms.
- Scaling State-Space Models
When working with state-space models, proper scaling is important for accurate computations.
- Scaling State-Space Models to Maximize Accuracy
This example shows that proper scaling of state-space models can be critical for accuracy and provides an overview of automatic and manual rescaling tools.
- Use Linearization Offsets to Help Compare Nonlinear and Linearized Responses
Use offsets from linearization to facilitate the comparison of the nonlinear and linearized responses of a Simulink model. (自 R2024a 起)