Main Content

本页翻译不是最新的。点击此处可查看最新英文版本。

模式识别

训练神经网络以从示例输入及其分类进行归纳,并训练自编码器

App

神经网络模式识别Solve pattern recognition problem using two-layer feed-forward networks

AutoencoderAutoencoder class

函数

全部展开

nprtool打开神经网络模式识别
view查看浅层神经网络
trainAutoencoderTrain an autoencoder
trainSoftmaxLayerTrain a softmax layer for classification
decodeDecode encoded data
encodeEncode input data
predictReconstruct the inputs using trained autoencoder
stackStack encoders from several autoencoders together
networkConvert Autoencoder object into network object
patternnetGenerate pattern recognition network
lvqnetLearning vector quantization neural network
trainTrain shallow neural network
trainlmLevenberg-Marquardt backpropagation
trainbrBayesian regularization backpropagation
trainscgScaled conjugate gradient backpropagation
trainrpResilient backpropagation
mse均方归一化误差性能函数
rocReceiver operating characteristic
plotconfusionPlot classification confusion matrix
ploterrhistPlot error histogram
plotperform绘制网络性能图
plotregression绘制线性回归图
plotroc绘制受试者工作特征图
plottrainstate绘制训练状态值图
crossentropyNeural network performance
genFunctionGenerate MATLAB function for simulating shallow neural network

示例和操作指南

基本设计

训练可扩展性和效率

最优解

分类

  • 螃蟹分类
    此示例说明如何使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。
  • 葡萄酒分类
    此示例说明模式识别神经网络如何根据葡萄酒的化学特性按酒庄对葡萄酒进行分类。
  • 癌症检测
    此示例说明如何训练一个神经网络来使用蛋白质表达谱上的质谱数据检测癌症。
  • 字符识别
    此示例说明如何训练神经网络以执行简单的字符识别。

自编码器

概念