Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio
Create a PortfolioCVaR
object and incorporate a list of assets from CAPMUniverse.mat
. Use simulateNormalScenariosByData
to simulate the scenarios for each of the assets. These portfolio constraints require fully invested long-only portfolios (nonnegative weights that must sum to 1
).
rng(1) % Set the seed for reproducibility. load CAPMuniverse p = PortfolioCVaR('AssetList',Assets(1:12)); p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true); p = setProbabilityLevel(p, 0.95); p = setDefaultConstraints(p); disp(p)
PortfolioCVaR with properties: BuyCost: [] SellCost: [] RiskFreeRate: [] ProbabilityLevel: 0.9500 Turnover: [] BuyTurnover: [] SellTurnover: [] NumScenarios: 20000 Name: [] NumAssets: 12 AssetList: {'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG' 'HPQ' 'IBM' 'INTC' 'MSFT' 'ORCL' 'YHOO'} InitPort: [] AInequality: [] bInequality: [] AEquality: [] bEquality: [] LowerBound: [12x1 double] UpperBound: [] LowerBudget: 1 UpperBudget: 1 GroupMatrix: [] LowerGroup: [] UpperGroup: [] GroupA: [] GroupB: [] LowerRatio: [] UpperRatio: [] MinNumAssets: [] MaxNumAssets: [] ConditionalBudgetThreshold: [] ConditionalUpperBudget: [] BoundType: [12x1 categorical]
To obtain the portfolio that maximizes the reward-to-risk ratio (which is equivalent to the Sharpe ratio for mean-variance portfolios), search on the efficient frontier iteratively for the portfolio that minimizes the negative of the reward-to-risk ratio:
To do so, use the sratio
function, defined in the Local Functions section, to return the negative reward-to-risk ratio for a target return. Then, pass this function to fminbnd
. fminbnd
iterates through the possible return values and evaluates their associated reward-to-risk ratio. fminbnd
returns the optimal return for which the maximum reward-to-risk ratio is achieved (or that minimizes the negative of the reward-to-risk ratio).
% Obtain the minimum and maximum returns of the portfolio. pwgtLimits = estimateFrontierLimits(p); retLimits = estimatePortReturn(p,pwgtLimits); minret = retLimits(1); maxret = retLimits(2); % Search on the frontier iteratively. Find the return that minimizes the % negative of the reward-to-risk ratio. fhandle = @(ret) iterative_local_obj(ret,p); options = optimset('Display', 'off', 'TolX', 1.0e-8); optret = fminbnd(fhandle, minret, maxret, options); % Obtain the portfolio weights associated with the return that achieves % the maximum reward-to-risk ratio. pwgt = estimateFrontierByReturn(p,optret)
pwgt = 12×1
0.0885
0
0
0
0
0.9115
0
0
0
0
⋮
Use plotFrontier
to plot the efficient frontier and estimatePortRisk
to estimate the maximum reward-to-risk ratio portfolio.
plotFrontier(p); hold on % Compute the risk level for the maximum reward-to-risk ratio portfolio. optrsk = estimatePortRisk(p,pwgt); scatter(optrsk,optret,50,'red','filled') hold off
Local Functions
This local function that computes the negative of the reward-to-risk ratio for a target return level.
function sratio = iterative_local_obj(ret, obj) % Set the objective function to the negative of the reward-to-risk ratio. risk = estimatePortRisk(obj,estimateFrontierByReturn(obj,ret)); if ~isempty(obj.RiskFreeRate) sratio = -(ret - obj.RiskFreeRate)/risk; else sratio = -ret/risk; end end
See Also
PortfolioCVaR
| getScenarios
| setScenarios
| estimateScenarioMoments
| simulateNormalScenariosByMoments
| simulateNormalScenariosByData
| setCosts
| checkFeasibility
Related Examples
- Troubleshooting CVaR Portfolio Optimization Results
- Creating the PortfolioCVaR Object
- Working with CVaR Portfolio Constraints Using Defaults
- Asset Returns and Scenarios Using PortfolioCVaR Object
- Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object
- Estimate Efficient Frontiers for PortfolioCVaR Object
- Hedging Using CVaR Portfolio Optimization