并行计算
在 CPU 和/或 GPU 上并行执行 MATLAB® 程序和 Simulink® 仿真
使用 MATLAB 的并行计算通过桌面、集群和云中的 CPU 和 GPU 提供帮助您利用更多硬件资源的语言及工具。
无需更改任何代码即可实现并行计算,因为已有数百个函数支持自动并行计算和 GPU。
编写可移植的并行代码,无论是否有 Parallel Computing Toolbox 的用户都可以运行,还可根据可用资源自动扩展。
只需编写一次并行代码,即可在不同的集群环境中执行。
使用本地多核处理器和 GPU 求解计算密集型问题,或扩展到计算集群。
适用产品:并行计算
主题
并行计算基础
- Run MATLAB Functions with Automatic Parallel Support (Parallel Computing Toolbox)
Take advantage of parallel computing resources without requiring any extra coding. - Interactively Run Loops in Parallel Using parfor (Parallel Computing Toolbox)
Convert afor
-loop into a scalableparfor
-loop. - Plot During Parameter Sweep with parfor (Parallel Computing Toolbox)
Perform a parameter sweep in parallel and plot progress during parallel computations.
Simulink 中的并行仿真:
- Running Multiple Simulations (Simulink)
Run multiple simulations from theparsim
andbatchsim
commands, and the Multiple Simulations panel in Simulink Editor.
在 MATLAB 中使用 GPU
- Run MATLAB Functions on a GPU (Parallel Computing Toolbox)
Supply agpuArray
argument to automatically run functions on a GPU.
扩展到集群和云
- Scale Up from Desktop to Cluster (Parallel Computing Toolbox)
Develop your parallel MATLAB® code on your local machine and scale up to a cluster. - Use Parallel Computing Toolbox with Cloud Center Cluster in MATLAB Online (Parallel Computing Toolbox)
Run parallel code in MATLAB Online™.
并行计算应用
- Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud (Deep Learning Toolbox)
Explore options for deep learning with MATLAB in parallel and using multiple GPUs, locally or in the cloud. - Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox (Optimization Toolbox)
Example showing how to use parallel computing in both Global Optimization Toolbox and Optimization Toolbox™ solvers.