Main Content

本页对应的英文页面已更新,但尚未翻译。 若要查看最新内容,请点击此处访问英文页面。

频谱估计

周期图,Welch 和 Lomb-Scargle PSD,相干性,传递函数,频率重排

使用 periodogrampwelchplomb 分析均匀或非均匀采样信号的频谱内容。使用重排锐化周期图估计。确定信号之间的频域相干性。基于输入和输出测量值估计传递函数。研究频域中的 MIMO 系统。

App

Signal AnalyzerVisualize and compare multiple signals and spectra

函数

全部展开

cpsdCross power spectral density
findpeaksFind local maxima
mscohereMagnitude-squared coherence
pentropySpectral entropy of signal
periodogramPeriodogram power spectral density estimate
plombLomb-Scargle periodogram
pmtmMultitaper power spectral density estimate
poctaveGenerate octave spectrum
pspectrumAnalyze signals in the frequency and time-frequency domains
pwelchWelch’s power spectral density estimate
tfestimateTransfer function estimate
dbConvert energy or power measurements to decibels
db2magConvert decibels to magnitude
db2powConvert decibels to power
mag2dbConvert magnitude to decibels
pow2dbConvert power to decibels

主题

Nonparametric Methods

Learn about the periodogram, modified periodogram, Welch, and multitaper methods of nonparametric spectral estimation.

Detect a Distorted Signal in Noise

Use frequency analysis to characterize a signal embedded in noise.

Detect Periodicity in a Signal with Missing Samples

Use the Lomb-Scargle periodogram to study the periodicity of an irregularly sampled signal.

测量信号的功率

估计包含信号大部分功率的频带宽度。对于失真信号,确定基波和谐波中存储的功率。

幅值估计和填零

通过填零获得正弦信号幅值的精确估计。

Bias and Variability in the Periodogram

Reduce bias and variability in the periodogram using windows and averaging.

比较两个信号的频谱

识别频域中信号之间的相似性。

Significance Testing for Periodic Component

Assess the significance of a sinusoidal component in white noise using Fisher's g-statistic.

Find Periodicity in a Categorical Time Series

Perform spectral analysis of data whose values are not inherently numerical.

交叉频谱和幅值平方相干性

获取正弦分量之间的相位滞后,并识别时序中的频域相关性。

Nonparametric Spectrum Object to Function Replacement

Replace calls to nonparametric psd and msspectrum objects with function calls.

特色示例