Main Content

本页翻译不是最新的。点击此处可查看最新英文版本。

异常检测

检测离群值和新奇值

Statistics and Machine Learning Toolbox™ 为未标注的多元样本数据提供了几种异常检测方法。异常检测通过训练模型或学习参数来检测离群值(训练数据中的异常)。对于新奇值检测(使用未污染的训练数据检测新数据中的异常),您可以使用未污染的训练数据(没有离群值的数据)训练模型或学习参数,并通过使用训练的模型或学习的参数来检测新数据中的异常。有关详细信息,请参阅Unsupervised Anomaly Detection

如果将训练数据标注为正常点和异常点,您可以训练二类分类模型,并使用 resubPredictpredict 对象函数分别检测训练数据和新数据中的异常。有关支持的分类方法列表,请参阅分类

该工具箱还提供了特定于模型的异常检测方法,您可以在训练分类、回归或聚类模型后应用这些方法。有关详细信息,请参阅 Model-Specific Anomaly Detection

函数

全部展开

iforestFit isolation forest for anomaly detection (自 R2021b 起)
isanomalyFind anomalies in data using isolation forest (自 R2021b 起)
rrcforestFit robust random cut forest model for anomaly detection (自 R2023a 起)
isanomalyFind anomalies in data using robust random cut forest (自 R2023a 起)
lofCreate local outlier factor model for anomaly detection (自 R2022b 起)
isanomalyFind anomalies in data using local outlier factor (自 R2022b 起)
ocsvmFit one-class support vector machine (SVM) model for anomaly detection (自 R2022b 起)
isanomalyFind anomalies in data using one-class support vector machine (SVM) (自 R2022b 起)
robustcovRobust multivariate covariance and mean estimate
mahalMahalanobis distance to reference samples
pdist2Pairwise distance between two sets of observations

对象

IsolationForestIsolation forest for anomaly detection (自 R2021b 起)
RobustRandomCutForestRobust random cut forest model for anomaly detection (自 R2023a 起)
LocalOutlierFactorLocal outlier factor model for anomaly detection (自 R2022b 起)
OneClassSVMOne-class support vector machine (SVM) for anomaly detection (自 R2022b 起)

主题