神经网络
神经网络模型由一系列反映大脑处理信息方式的层构成。Statistics and Machine Learning Toolbox™ 中提供的回归神经网络模型是完全连接的前馈神经网络,您可以调整全连接层的大小并更改层的激活函数。
要训练回归神经网络模型,可以使用回归学习器。为了获得更大的灵活性,请在命令行界面中使用 fitrnet 来训练回归神经网络模型。经过训练后,您可以通过将模型和新预测数据传递给 predict 来预测变量新数据的响应。
如果您要创建更复杂的深度学习网络并拥有 Deep Learning Toolbox™,您可以尝试深度网络设计器 (Deep Learning Toolbox)。
App
| 回归学习器 | 使用有监督机器学习训练回归模型来预测数据 |
模块
| RegressionNeuralNetwork Predict | Predict responses using neural network regression model (自 R2021b 起) |
函数
对象
RegressionNeuralNetwork | Neural network model for regression (自 R2021a 起) |
CompactRegressionNeuralNetwork | Compact neural network model for regression (自 R2021a 起) |
RegressionPartitionedNeuralNetwork | Cross-validated regression neural network model (自 R2023b 起) |
RegressionQuantileNeuralNetwork | Quantile neural network model for regression (自 R2024b 起) |
CompactRegressionQuantileNeuralNetwork | Compact quantile neural network model for regression (自 R2025a 起) |
RegressionPartitionedQuantileModel | Cross-validated quantile model for regression (自 R2025a 起) |
主题
- Assess Regression Neural Network Performance
Use
fitrnetto create a feedforward regression neural network model with fully connected layers, and assess the performance of the model on test data. - Working with Quantile Regression Models
Estimate prediction intervals and create models that are robust to outliers by using quantile regression models.
- Create Prediction Intervals Using Split Conformal Prediction
Create a prediction interval and use conformalized quantile regression to calibrate the prediction interval.
- Deploy Neural Network Regression Model to FPGA/ASIC Platform
Predict in Simulink® using a neural network regression model, and deploy the Simulink model to an FPGA/ASIC platform by using HDL code generation.