Main Content

本页翻译不是最新的。点击此处可查看最新英文版本。

设定

创建 SDE 模型

对象

sdeStochastic Differential Equation (SDE) model
bates Bates stochastic volatility model
bm布朗运动 (BM) 模型
gbm几何布朗运动 (GBM) 模型
merton Merton jump diffusion model
driftDrift-rate model component
diffusionDiffusion-rate model component
sdeddoStochastic Differential Equation (SDEDDO) model from Drift and Diffusion components
sdeldSDE with Linear Drift (SDELD) model
cevConstant Elasticity of Variance (CEV) model
cirCox-Ingersoll-Ross (CIR) mean-reverting square root diffusion model
hestonHeston model
hwvHull-White/Vasicek (HWV) Gaussian Diffusion model
sdemrdSDE with Mean-Reverting Drift (SDEMRD) model

示例和操作指南

  • Base SDE Models

    Use base SDE models to represent a univariate geometric Brownian Motion model.

  • Drift and Diffusion Models

    Create SDE objects with combinations of customized drift or diffusion functions and objects.

  • Linear Drift Models

    sdeld objects provide a parametric alternative to the mean-reverting drift form.

  • Parametric Models

    Financial Toolbox™ supports several parametric models based on the SDE class hierarchy.

概念

  • SDEs

    Model dependent financial and economic variables by performing standard Monte Carlo or Quasi-Monte Carlo simulation of stochastic differential equations (SDEs).

  • SDE Class Hierarchy

    The SDE class structure represents a generalization and specialization hierarchy.

  • SDE Models

    Most models and utilities available with Monte Carlo Simulation of SDEs are represented as MATLAB® objects.

  • Quasi-Monte Carlo Simulation

    Quasi-Monte Carlo simulation is a Monte Carlo simulation but uses quasi-random sequences instead pseudo random numbers.