自适应控制设计
设计能够适应不断变化的过程信息的控制器
自 R2021a 起
自 R2021a 起
如果控制系统包含随时间变化的不确定性,如未建模的系统动态特性和扰动,则自适应控制器可以通过实时调整其参数来补偿变化的过程信息。通过执行此操作,此类控制器可以实现期望的参考跟踪,即使被控对象动态中存在不确定性也是如此。
Simulink® Control Design™ 软件为以下实时自适应控制方法提供几个 Simulink 模块。
极值搜索控制 - 无模型自适应,用于最大化从控制系统派生的目标函数
模型参考自适应控制 - 自适应,用于跟踪已知参考模型的输出
迭代学习控制 - 基于模型的自适应和无模型自适应,以提高重复控制任务的性能。
滑动模式控制 - 在滑动面上保持系统状态,以便在存在不确定性和扰动的情况下提供高精确度和稳健的控制。
虚拟参考反馈调节 - 基于输入-输出数据自动调节线性参数化控制器
模块
| Extremum Seeking Control | Compute controller parameters in real time by maximizing objective function |
| Model Reference Adaptive Control | Compute control actions to make controlled system track reference model (自 R2021b 起) |
| Iterative Learning Control | Design iterative learning controller for repetitive control tasks (自 R2024b 起) |
| Sliding Mode Controller (Reaching Law) | Design sliding mode controller based on reaching law (自 R2024b 起) |
| Linear Sliding Mode Controller (State Feedback) | Design sliding mode control with knowledge of linear systems using state feedback (自 R2025a 起) |
| Virtual Reference Feedback Tuning | Automatically tune linearly parameterized controllers based on input-output data (自 R2025a 起) |
主题
极值搜索控制
- 极值搜索控制
在存在未知系统动态特性的情况下,更新控制器参数以最大化目标函数。 - Extremum Seeking Control for Reference Model Tracking of Uncertain Systems
Track a reference plant model by adapting feedforward and feedback gains for an uncertain dynamic system. - Anti-Lock Braking Using Extremum Seeking Control
Design an extremum seeking controller that maximizes the friction coefficient of an ABS system to achieve the shortest stopping distance.
模型参考自适应控制
- 模型参考自适应控制
计算控制动作,使不确定的受控系统能够跟踪给定参考被控对象模型的行为。 - Model Reference Adaptive Control of Satellite Spin
Design an MRAC controller that adapts plant uncertainty model parameters to achieve performance that matches an ideal reference model. - 一阶系统的间接模型参考自适应控制
设计一个间接 MRAC 控制器,用于估计未知一阶系统的属性。 - 质量-弹簧-阻尼器系统的间接 MRAC 控制
设计一个间接 MRAC 控制器,用于估计未知 MIMO 系统的参数。
滑动模式控制
- Sliding Mode Control
Design sliding mode control based on reaching law. - 质量-弹簧-阻尼器系统的滑动模式控制设计
滑动模式控制器定义了系统状态会收敛到并保持在其上的滑动面。 (自 R2024b 起) - 机械臂的滑动模式控制设计
为具有两个驱动关节的机械臂创建滑动模式控制器。 (自 R2024b 起) - Stabilize Chua System Using Sliding Mode Controller
Design sliding mode controller to stabilize a chaotic system. (自 R2025a 起) - Sliding Mode Control of DC Motor
Design SMC for reference tracking for a DC motor. (自 R2025a 起)
迭代学习控制
- 迭代学习控制
为重复控制任务设计迭代学习控制。 - Iterative Learning Control of a Single-Input Single-Output System
Implement an ILC controller to improve closed-loop trajectory tracking performance. (自 R2024b 起) - Model Based Iterative Learning Control of Multi-Input Multi-Output System
Implement model-based ILC controller to improve closed-loop trajectory tracking performance of a MIMO system. (自 R2024b 起)
虚拟参考反馈调节
- Virtual Reference Feedback Tuning
Automatically tune linear controllers such as FIR, PID, or a combination of linearly parameterized controllers based on input-output data. - Tune PID Controller for Mass-Spring-Damper System Using Virtual Reference Feedback Tuning Block
Tune PID controller for mass-spring-damper using VRFT. (自 R2025a 起) - Tune FIR Filter Type Controller for Flexible Transmission System Using Virtual Reference Feedback Tuning Block
Tune FIR filter type controller using VRFT. (自 R2025a 起)
自适应陷波滤波器
- Suppress PMSM Harmonics Using an Extremum Seeking Control Based Adaptive Notch Filter
Reduce harmonic distortion in a PMSM using an extremum seeking control based adaptive notch filter. (自 R2025a 起) - Suppress Resonances Using Extremum Seeking Control and Frequency Response Estimator Based Adaptive Notch Filter
Suppress resonances in a coupled inertia system using an adaptive notch filter implement using extremum seeking control and frequency response estimator. (自 R2025a 起)





