Main Content

Pearson Distribution

Evaluate Pearson distribution probability functions and generate random samples

Statistics and Machine Learning Toolbox™ offers two ways to work with the Pearson distribution:

  • Use distribution-specific functions (pearspdf, pearscdf, pearsrnd,pearsinv) with specified distribution parameters. The distribution-specific functions can accept parameters from multiple Pearson distributions.

  • Use generic distribution functions (cdf, pdf, random,icdf) with the distribution name "Pearson" and specified distribution parameters.

To learn about the Pearson distribution, see Pearson Distribution.

Objects

PearsonDistributionPearson probability distribution object (Since R2025a)

Functions

expand all

Create PearsonDistribution Object

makedistCreate probability distribution object

Work with PearsonDistribution Object

cdfCumulative distribution function
icdfInverse cumulative distribution function
iqrInterquartile range of probability distribution
meanMean of probability distribution
medianMedian of probability distribution
pdfProbability density function
plotPlot probability distribution object (Since R2022b)
randomRandom numbers
stdStandard deviation of probability distribution
truncateTruncate probability distribution object
varVariance of probability distribution
pearspdfPearson probability density function (Since R2023b)
pearscdfPearson cumulative distribution function (Since R2023b)
pearsrndPearson system random numbers
pearsinvPearson inverse cumulative distribution function (Since R2025a)

Topics