计算机视觉
利用计算机视觉应用扩展深度学习工作流
通过将 Computer Vision Toolbox™ 与 Deep Learning Toolbox™ 结合使用,将深度学习应用于计算机视觉应用。
App
函数
主题
目标检测
- Getting Started with Object Detection Using Deep Learning (Computer Vision Toolbox)
Perform object detection and instance segmentation using deep learning neural networks. - Augment Bounding Boxes for Object Detection
This example shows how to perform common kinds of image and bounding box augmentation as part of object detection workflows. - 使用 R-CNN 深度学习训练目标检测器
此示例说明如何使用深度学习和 R-CNN(区域卷积神经网络)训练目标检测器。 - Import Pretrained ONNX YOLO v2 Object Detector
This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) you only look once (YOLO) v2 [1] object detection network and use it to detect objects. - Export YOLO v2 Object Detector to ONNX
This example shows how to export a YOLO v2 object detection network to ONNX™ (Open Neural Network Exchange) model format. - Deploy Object Detection Model as Microservice (MATLAB Compiler SDK)
Use a microservice to detect objects in images.
语义分割
- Getting Started with Semantic Segmentation Using Deep Learning (Computer Vision Toolbox)
Segment objects by class using deep learning. - Train Simple Semantic Segmentation Network in Deep Network Designer
This example shows how to create and train a simple semantic segmentation network using Deep Network Designer. - Augment Pixel Labels for Semantic Segmentation
This example shows how to perform common kinds of image and pixel label augmentation as part of semantic segmentation workflows. - 使用扩张卷积进行语义分割
使用扩张卷积训练语义分割网络。 - 使用深度学习对多光谱图像进行语义分割
此示例说明如何使用 U-Net 对包含七个通道的多光谱图像执行语义分割。 - 使用深度学习进行三维脑肿瘤分割
此示例说明如何基于三维医学图像执行脑肿瘤的语义分割。 - 定义使用 Tversky 损失的自定义像素分类层
此示例说明如何定义和创建使用 Tversky 损失的自定义像素分类层。 - Explore Semantic Segmentation Network Using Grad-CAM
This example shows how to explore the predictions of a pretrained semantic segmentation network using Grad-CAM. - Generate Adversarial Examples for Semantic Segmentation (Computer Vision Toolbox)
Generate adversarial examples for a semantic segmentation network using the basic iterative method (BIM).
视频分类
- Activity Recognition from Video and Optical Flow Data Using Deep Learning
This example first shows how to perform activity recognition using a pretrained Inflated 3-D (I3D) two-stream convolutional neural network based video classifier and then shows how to use transfer learning to train such a video classifier using RGB and optical flow data from videos [1]. - Gesture Recognition using Videos and Deep Learning
Perform gesture recognition using a pretrained SlowFast video classifier.