特征检测和提取
局部特征及其描述符是许多计算机视觉算法的构建块。其应用包括图像配准、目标检测和分类、跟踪、运动估计和基于内容的图像检索 (CBIR)。这些算法使用局部特征来更好地处理缩放变化、旋转和遮挡。Computer Vision Toolbox™ 算法包括 FAST、哈里斯和 Shi & Tomasi 角点检测器,以及 SIFT、SURF、KAZE 和 MSER 斑点检测器。工具箱包括 SIFT、SURF、FREAK、BRISK、LBP、ORB 和 HOG 描述符。您可以根据应用的要求混合搭配检测器和描述符。
App
图像配准器 | 配准二维灰度图像 |
函数
detectBRISKFeatures | Detect BRISK features |
detectFASTFeatures | Detect corners using FAST algorithm |
detectHarrisFeatures | 使用哈里斯-斯蒂芬斯算法检测角点 |
detectKAZEFeatures | Detect KAZE features |
detectMinEigenFeatures | Detect corners using minimum eigenvalue algorithm |
detectMSERFeatures | Detect MSER features |
detectORBFeatures | Detect ORB keypoints |
detectSIFTFeatures | Detect scale invariant feature transform (SIFT) features (自 R2021b 起) |
detectSURFFeatures | 检测 SURF 特征 |
extractFeatures | Extract interest point descriptors |
extractLBPFeatures | Extract local binary pattern (LBP) features |
extractHOGFeatures | Extract histogram of oriented gradients (HOG) features |
matchFeatures | Find matching features |
matchFeaturesInRadius | Find matching features within specified radius (自 R2021a 起) |
estgeotform2d | Estimate 2-D geometric transformation from matching point pairs (自 R2022b 起) |
estgeotform3d | Estimate 3-D geometric transformation from matching point pairs (自 R2022b 起) |
imwarp | 对图像应用几何变换 |
imblend | Blend two images (自 R2024b 起) |
vision.BlockMatcher | Estimate motion between images or video frames |
vision.TemplateMatcher | Locate template in image |
insertMarker | Insert markers in image or video |
insertShape | Insert shapes in image or video |
showMatchedFeatures | Display corresponding feature points |
showShape | Display shapes on image, video, or point cloud |
insertObjectAnnotation | Annotate truecolor or grayscale image or video |
insertObjectKeypoints | Insert object keypoints in image (自 R2023b 起) |
insertText | Insert text in image or video |
imshow | 显示图像 |
imshowpair | 比较图像之间的差异 |
vision.ChromaResampler | Downsample or upsample chrominance components of images |
binaryFeatures | Object for storing binary feature vectors |
BRISKPoints | 用于存储 BRISK 相关点的对象 |
cornerPoints | Object for storing corner points |
KAZEPoints | Object for storing KAZE interest points |
MSERRegions | Object for storing MSER regions |
ORBPoints | Object for storing ORB keypoints |
SIFTPoints | Object for storing SIFT interest points (自 R2021b 起) |
SURFPoints | Object for storing SURF interest points |
rigidtform2d | 2-D rigid geometric transformation (自 R2022b 起) |
simtform2d | 2-D similarity geometric transformation (自 R2022b 起) |
affinetform2d | 二维仿射几何变换 (自 R2022b 起) |
projtform2d | 二维投影几何变换 (自 R2022b 起) |
rigidtform3d | 3-D rigid geometric transformation (自 R2022b 起) |
simtform3d | 3-D similarity geometric transformation (自 R2022b 起) |
创建识别数据库
bagOfFeatures | Bag of visual words object |
invertedImageIndex | Search index that maps visual words to images |
检索图像
retrieveImages | Search image set for similar image |
imageDatastore | 图像数据的数据存储 |
evaluateImageRetrieval | Evaluate image search results |
主题
- Local Feature Detection and Extraction
Learn the benefits and applications of local feature detection and extraction.
- Point Feature Types
Choose functions that return and accept points objects for several types of features.
- 坐标系
指定像素索引、空间坐标和三维坐标系。
- Image Retrieval with Bag of Visual Words
Retrieve images from a collection of images similar to a query image using a content-based image retrieval (CBIR) system.
精选示例
Image Retrieval Using Customized Bag of Features
Create a Content Based Image Retrieval (CBIR) system using a customized bag-of-features workflow.
Pattern Matching
Use the 2-D normalized cross-correlation for pattern matching and target tracking. The example uses predefined or user specified target and number of similar targets to be tracked. The normalized cross correlation plot shows that when the value exceeds the set threshold, the target is identified.
Find Object in Cluttered Scene Using Image Point Features
Detect a particular object in a cluttered scene, given a reference image of the object.
Digit Classification Using HOG Features
Classify digits using HOG features and a multiclass SVM classifier.
Automatically Find Image Rotation and Scale
Demonstrates how to automatically determine the geometric transformation between two images. Specifically, when one image is distorted in relation to another due to rotation and scaling, the functions detectSURFFeatures
and estimateGeometricTransform2D
can be employed to identify the rotation angle and scale factor. Subsequently, these parameters can be used to transform the distorted image back to its original appearance.
Create Panorama
Automatically stitch multiple images into panorama. The procedure for image stitching is an extension of feature based image registration. Instead of registering a single pair of images, multiple image pairs are successively registered relative to each other to form a panorama.
Stabilize Video Using Image Point Features
Stabilize a video that was captured from a jittery platform. One way to stabilize a video is to track a salient feature in the image and use this as an anchor point to cancel out all perturbations relative to it. This procedure, however, must be bootstrapped with knowledge of where such a salient feature lies in the first video frame. In this example, we explore a method of video stabilization that works without any such a priori knowledge. It instead automatically searches for the "background plane" in a video sequence, and uses the observed distortion to correct for camera motion.
Cell Counting
Use a combination of basic morphological operators and blob analysis to extract information from a video stream. In this case, the example counts the number of E. Coli bacteria in each video frame. Note that the cells are of varying brightness, which makes the task of segmentation more challenging.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)