主要内容

本页翻译不是最新的。点击此处可查看最新英文版本。

内置训练

使用内置训练函数训练深度学习网络

定义网络架构后,您可以使用 trainingOptions 函数定义训练参数。然后,您可以使用 trainnet 函数训练网络。使用经过训练的网络预测类标签或数值响应。

函数

全部展开

dlnetworkDeep learning neural network
trainingOptionsOptions for training deep learning neural network
trainnetTrain deep learning neural network (自 R2023b 起)
TrainingInfoNeural network training information (自 R2023b 起)
showShow training information plot (自 R2023b 起)
closeClose training information plot (自 R2023b 起)
piecewiseLearnRatePiecewise learning rate schedule (自 R2024b 起)
warmupLearnRateWarm-up learning rate schedule (自 R2024b 起)
polynomialLearnRatePolynomial learning rate schedule (自 R2024b 起)
exponentialLearnRateExponential learning rate schedule (自 R2024b 起)
cosineLearnRateCosine learning rate schedule (自 R2024b 起)
cyclicalLearnRateCyclical learning rate schedule (自 R2024b 起)
testnetTest deep learning neural network (自 R2024b 起)
accuracyMetricDeep learning accuracy metric (自 R2023b 起)
aucMetricDeep learning area under ROC curve (AUC) metric (自 R2023b 起)
fScoreMetricDeep learning F-score metric (自 R2023b 起)
precisionMetricDeep learning precision metric (自 R2023b 起)
recallMetricDeep learning recall metric (自 R2023b 起)
rmseMetricDeep learning root mean squared error metric (自 R2023b 起)
predictCompute deep learning network output for inference
minibatchpredictMini-batched neural network prediction (自 R2024a 起)
scores2labelConvert prediction scores to labels (自 R2024a 起)
confusionchartCreate confusion matrix chart for classification problem
sortClassesSort classes of confusion matrix chart
classifyAndUpdateState(Not recommended) Classify data using a trained recurrent neural network and update the network state

主题

训练基础

表格数据工作流

序列数据工作流

图像数据工作流

精选示例