使用深度学习进行图像处理
使用深度神经网络执行图像处理任务,例如去除图像噪声和执行图像到图像的转换(需要 Deep Learning Toolbox™)
深度学习使用神经网络直接从数据中学习有用的特征表示。例如,您可以使用预训练神经网络来识别和去除图像中的噪声等项。
函数
主题
预处理图像数据以进行深度学习
- Get Started with Image Preprocessing and Augmentation for Deep Learning
Preprocess data for deep learning applications with deterministic operations such as resizing, or augment training data with randomized operations such as random cropping.
- Datastores for Deep Learning (Deep Learning Toolbox)
Learn how to use datastores in deep learning applications. - 为图像到图像的回归准备数据存储 (Deep Learning Toolbox)
此示例说明如何准备数据存储,以便使用ImageDatastore
的transform
和combine
函数来训练图像到图像的回归网络。 - Augment Images for Deep Learning Workflows
This example shows how you can perform common kinds of randomized image augmentation such as geometric transformations, cropping, and adding noise.
创建用于图像处理应用的神经网络
- Train and Apply Denoising Neural Networks
Use a pretrained neural network to remove Gaussian noise from a grayscale image, or train your own network using predefined layers. - Create Modular Neural Networks
You can create and customize deep learning networks that follow a modular pattern with repeating groups of layers, such as U-Net and cycleGAN. - Get Started with GANs for Image-to-Image Translation
Transfer styles and characteristics from one set of images to the scene content of other images by using generative adversarial networks (GANs). - 预训练的深度神经网络 (Deep Learning Toolbox)
了解如何下载和使用预训练的卷积神经网络进行分类、迁移学习和特征提取。 - 深度学习层列表 (Deep Learning Toolbox)
探索 MATLAB® 中的所有深度学习层。
在 MATLAB 中进行深度学习
- 在 MATLAB 中进行深度学习 (Deep Learning Toolbox)
通过使用卷积神经网络进行分类和回归来探索 MATLAB 的深度学习能力,包括预训练网络和迁移学习,以及在 GPU、CPU、集群和云上进行训练。 - Semantic Segmentation Using Deep Learning (Computer Vision Toolbox)
This example shows how to segment an image using a semantic segmentation network.