Main Content

本页的翻译已过时。点击此处可查看最新英文版本。

数值积分和微分

求积、二重积分和三重积分以及多维导数

无论函数表达式是否已知,数值积分函数都可以求积分的近似值:

  • 当您知道如何计算函数时,可以使用 integral 计算具有指定边界的积分。

  • 要对底层方程未知的一组数据进行积分,可以使用 trapz,它用数据点形成一系列面积易于计算的梯形,以此执行梯形积分。

对于微分,可以使用 gradient 来求数据数组的微分,它用有限差分公式来计算数值导数。要计算函数表达式的导数,必须使用 Symbolic Math Toolbox™

函数

全部展开

integral数值积分
integral2对二重积分进行数值计算
integral3对三重积分进行数值计算
quadgk计算数值积分 - 高斯-勒让德积分法
quad2d计算二重数值积分 - tiled 方法
cumtrapz累积梯形数值积分
trapz梯形数值积分
del2离散拉普拉斯算子
diff差分和近似导数
gradient数值梯度
polyint多项式积分
polyder多项式微分

主题

计算弧线长度的积分

此示例说明了如何参数化曲线以及使用 integral 计算弧线长度。

复曲线积分

此示例说明如何使用 integral 函数的 'Waypoints' 选项计算复曲线积分。在 MATLAB® 中,可以使用 'Waypoints' 选项定义直线路径序列,从第一个积分限值到第一个路径点,从第一个路径点到第二个路径点,依此类推,直到从最后一个路径点到第二个积分限值。

积分域内部的奇点

本示例显示如何拆分积分域以将奇点放在边界上。

多项式积分的解析解

本示例显示如何使用 polyint 函数对多项式求解析积分。使用此函数来计算多项式的不定积分。

数值数据的积分

此示例显示如何对一组离散速度数据进行数值积分以逼近行驶距离。integral 族仅接受函数句柄输入,所以这些函数不能用于离散数据集。当函数表达式不能用于积分时,使用 trapzcumtrapz

计算表面的切平面

此示例说明如何按有限差分逼近函数梯度。然后说明如何通过使用这些逼近的梯度,绘制平面上某个点的切平面。