主要内容

本页翻译不是最新的。点击此处可查看最新英文版本。

内置层

使用内置层构建深度神经网络

对于大多数任务,您可以使用内置层。如果没有您的任务所需的内置层,则可以定义您自己的自定义层。您可以定义具有可学习参数和状态参数的自定义层。定义自定义层后,您可以检查该层是否有效,是否与 GPU 兼容,以及是否输出正确定义的梯度。要查看支持的层的列表,请参阅深度学习层列表

App

深度网络设计器设计和可视化深度学习网络

函数

全部展开

输入层

inputLayerInput layer (自 R2023b 起)
imageInputLayerImage input layer
image3dInputLayer3-D image input layer
sequenceInputLayerSequence input layer
featureInputLayerFeature input layer

卷积和全连接层

convolution1dLayer1-D convolutional layer (自 R2021b 起)
convolution2dLayer2-D convolutional layer
convolution3dLayer3-D convolutional layer
groupedConvolution2dLayer2-D grouped convolutional layer
transposedConv1dLayerTransposed 1-D convolution layer (自 R2022a 起)
transposedConv2dLayerTransposed 2-D convolution layer
transposedConv3dLayerTransposed 3-D convolution layer
fullyConnectedLayerFully connected layer

循环层

lstmLayerLong short-term memory (LSTM) layer for recurrent neural network (RNN)
bilstmLayerBidirectional long short-term memory (BiLSTM) layer for recurrent neural network (RNN)
gruLayerGated recurrent unit (GRU) layer for recurrent neural network (RNN)
lstmProjectedLayerLong short-term memory (LSTM) projected layer for recurrent neural network (RNN) (自 R2022b 起)
gruProjectedLayerGated recurrent unit (GRU) projected layer for recurrent neural network (RNN) (自 R2023b 起)

变换器层

selfAttentionLayerSelf-attention layer (自 R2023a 起)
attentionLayerDot-product attention layer (自 R2024a 起)
positionEmbeddingLayerPosition embedding layer (自 R2023b 起)
sinusoidalPositionEncodingLayerSinusoidal position encoding layer (自 R2023b 起)
embeddingConcatenationLayerEmbedding concatenation layer (自 R2023b 起)
indexing1dLayer1-D indexing layer (自 R2023b 起)

神经 ODE 层

neuralODELayerNeural ODE layer (自 R2023b 起)
deep.ode.options.ODE1Neural ODE solver options for nonstiff differential equations using Euler method (自 R2025a 起)
deep.ode.options.ODE45Neural ODE solver options for nonstiff differential equations (自 R2025a 起)

激活层

reluLayer修正线性单元 (ReLU) 层
leakyReluLayerLeaky Rectified Linear Unit (ReLU) layer
preluLayerParametrized Rectified Linear Unit (PReLU) layer (自 R2024a 起)
clippedReluLayerClipped Rectified Linear Unit (ReLU) layer
eluLayerExponential linear unit (ELU) layer
tanhLayer双曲正切 (tanh) 层
swishLayerSwish layer (自 R2021a 起)
geluLayerGaussian error linear unit (GELU) layer (自 R2022b 起)
softmaxLayerSoftmax 层
sigmoidLayersigmoid 层
softplusLayerSoftplus layer
complexReluLayerComplex rectified linear unit (ReLU) layer (自 R2025a 起)
functionLayerFunction layer (自 R2021b 起)

归一化层

batchNormalizationLayerBatch normalization layer
groupNormalizationLayerGroup normalization layer
instanceNormalizationLayerInstance normalization layer (自 R2021a 起)
layerNormalizationLayerLayer normalization layer (自 R2021a 起)
crossChannelNormalizationLayer Channel-wise local response normalization layer

实用工具层

dropoutLayer丢弃层
spatialDropoutLayerSpatial dropout layer (自 R2024a 起)
flattenLayer展平层
crop2dLayer2-D crop layer
crop3dLayer3-D crop layer
scalingLayerScaling layer
quadraticLayerQuadratic layer
identityLayerIdentity layer (自 R2024b 起)
complexToRealLayerComplex-to-real layer (自 R2024b 起)
realToComplexLayerReal-to-complex layer (自 R2024b 起)
networkLayerNetwork Layer (自 R2024a 起)
reshapeLayerReshape layer (自 R2025a 起)
permuteLayerPermute layer (自 R2025a 起)

池化和去池化层

averagePooling1dLayer1-D average pooling layer (自 R2021b 起)
averagePooling2dLayerAverage pooling layer
averagePooling3dLayer3-D average pooling layer
adaptiveAveragePooling2dLayerAdaptive average pooling 2-D layer (自 R2024a 起)
globalAveragePooling1dLayer1-D global average pooling layer (自 R2021b 起)
globalAveragePooling2dLayer2-D global average pooling layer
globalAveragePooling3dLayer3-D global average pooling layer
globalMaxPooling1dLayer1-D global max pooling layer (自 R2021b 起)
globalMaxPooling2dLayerGlobal max pooling layer
globalMaxPooling3dLayer3-D global max pooling layer
maxPooling1dLayer1-D max pooling layer (自 R2021b 起)
maxPooling2dLayerMax pooling layer
maxPooling3dLayer3-D max pooling layer
maxUnpooling2dLayerMax unpooling layer

组合层

dlnetworkDeep learning neural network
imagePretrainedNetwork适用于图像的预训练神经网络 (自 R2024a 起)
resnetNetwork2-D residual neural network (自 R2024a 起)
resnet3dNetwork3-D residual neural network (自 R2024a 起)
dag2dlnetworkConvert SeriesNetwork and DAGNetwork to dlnetwork (自 R2024a 起)
addLayers向神经网络添加层
removeLayersRemove layers from neural network
replaceLayerReplace layer in neural network
getLayerLook up a layer by name or path (自 R2024a 起)
connectLayers在神经网络中连接各层
disconnectLayersDisconnect layers in neural network
expandLayersExpand network layers (自 R2024a 起)
groupLayersGroup layers into network layers (自 R2024a 起)
addInputLayerAdd input layer to network (自 R2022b 起)
initializeInitialize learnable and state parameters of neural network (自 R2021a 起)
networkDataLayoutDeep learning network data layout for learnable parameter initialization (自 R2022b 起)
setL2FactorSet L2 regularization factor of layer learnable parameter
getL2FactorGet L2 regularization factor of layer learnable parameter
setLearnRateFactorSet learn rate factor of layer learnable parameter
getLearnRateFactorGet learn rate factor of layer learnable parameter
plot绘制神经网络架构
summary打印网络摘要 (自 R2022b 起)
analyzeNetworkAnalyze deep learning network architecture
checkLayerCheck validity of custom or function layer
isequalCheck equality of neural networks (自 R2021a 起)
isequalnCheck equality of neural networks ignoring NaN values (自 R2021a 起)

主题

精选示例