Load the sample data. Create a probability distribution object by fitting a generalized extreme value distribution to the miles per gallon (MPG
) data.
pd =
GeneralizedExtremeValueDistribution
Generalized Extreme Value distribution
k = -0.207765 [-0.381674, -0.0338563]
sigma = 7.49674 [6.31755, 8.89604]
mu = 20.6233 [18.8859, 22.3606]
View the parameter names for the distribution.
ans = 1x3 cell
{'k'} {'sigma'} {'mu'}
For the generalized extreme value distribution, k
is in position 1, sigma
is in position 2, and mu
is in position 3.
Compute the profile likelihood for mu
, which is in position pnum = 3
. Restrict the computation to parameter values from 20 to 22, and display the plot.
The plot shows the estimated value for the parameter mu
that maximizes the loglikelihood.
Display the loglikelihood values for the estimated values of mu
, and the values of the other distribution parameters that maximize the corresponding loglikelihood.
ans = 21×4
-327.5706 20.0000 -0.1803 7.4087
-327.4971 20.1000 -0.1846 7.4218
-327.4364 20.2000 -0.1890 7.4354
-327.3887 20.3000 -0.1934 7.4493
-327.3538 20.4000 -0.1978 7.4636
-327.3317 20.5000 -0.2023 7.4783
-327.3223 20.6000 -0.2067 7.4932
-327.3257 20.7000 -0.2112 7.5084
-327.3418 20.8000 -0.2156 7.5240
-327.3706 20.9000 -0.2201 7.5399
⋮
The first column contains the log likelihood value that corresponds to the estimate of mu
in the second column. The log likelihood is maximized between the parameter values 20.6000 and 20.7000, corresponding to log likelihood values -327.3223 and -327.3257. The third column contains the value of k
that maximizes the corresponding log likelihood for mu
. The fourth column contains the value of sigma
that maximizes the corresponding log likelihood for mu
.