使用 AI 进行信号处理
Signal Processing Toolbox™ 为机器学习和深度学习工作流提供执行信号标注、特征工程和数据集生成的功能。该工具箱还提供一个 autoencoder 对象,您可以对其进行训练并用于检测信号数据中的异常。
App
函数
主题
- Manage Data Sets for Machine Learning and Deep Learning Workflows
Organize, access, and manage data sets for different AI applications.
- Choose an App to Label Ground Truth Data
Decide which app to use to label ground truth data: Image Labeler, Video Labeler, Ground Truth Labeler, Lidar Labeler, Signal Labeler, or Medical Image Labeler.
- Radar and Communications Waveform Classification Using Deep Learning (Phased Array System Toolbox)
Classify radar and communications waveforms using the Wigner-Ville distribution (WVD) and a deep convolutional neural network (CNN).
- Label Radar Signals with Signal Labeler (Radar Toolbox)
Label the time and frequency features of pulse radar signals with added noise.
- Pedestrian and Bicyclist Classification Using Deep Learning (Radar Toolbox)
Classify pedestrians and bicyclists based on their micro-Doppler characteristics using deep learning and time-frequency analysis.
- Wavelet Time Scattering Classification of Phonocardiogram Data (Wavelet Toolbox)
Classify human phonocardiogram recordings using wavelet time scattering and a support vector machine classifier.
- Anomaly Detection Using Autoencoder and Wavelets
Use wavelet-extracted features and an autoencoder to detect arc signals in a DC system.
- Detect Anomalies in ECG Data Using Wavelet Scattering and LSTM Autoencoder in Simulink
Use wavelet scattering and a deep learning network within a Simulink® model to detect anomalies in ECG signals.
- Train Spoken Digit Recognition Network Using Out-of-Memory Features
Train a spoken digit recognition network on out-of-memory auditory spectrograms using a transformed datastore.
- 使用深度学习网络对语音去噪
使用全连接和卷积神经网络对语音信号去噪。
- 使用小波分析和深度学习对时间序列分类
使用连续小波变换和深度卷积神经网络对 ECG 信号进行分类。
- Spectral Descriptors (Audio Toolbox)
Overview and applications of spectral descriptors.
相关信息
- 在 MATLAB 中进行深度学习 (Deep Learning Toolbox)
- 使用深度学习进行序列分类 (Deep Learning Toolbox)
- 如何在 MATLAB